Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 529
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Glia ; 72(2): 274-288, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37746760

RESUMEN

Auditory dysfunction and increased neuronal activity in the auditory pathways have been reported in patients with temporal lobe epilepsy, but the cellular mechanisms involved are unknown. Here, we report that microglia play a role in the disinhibition of auditory pathways after status epilepticus in mice. We found that neuronal activity in the auditory pathways, including the primary auditory cortex and the medial geniculate body (MGB), was increased and auditory discrimination was impaired after status epilepticus. We further demonstrated that microglia reduced inhibitory synapses on MGB relay neurons over an 8-week period after status epilepticus, resulting in auditory pathway hyperactivity. In addition, we found that local removal of microglia from the MGB attenuated the increase in c-Fos+ relay neurons and improved auditory discrimination. These findings reveal that thalamic microglia are involved in auditory dysfunction in epilepsy.


Asunto(s)
Microglía , Estado Epiléptico , Ratones , Humanos , Animales , Cuerpos Geniculados/metabolismo , Tálamo , Vías Auditivas/metabolismo , Estado Epiléptico/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33658359

RESUMEN

The central nucleus of the inferior colliculus (ICC) integrates information about different features of sound and then distributes this information to thalamocortical circuits. However, the lack of clear definitions of circuit elements in the ICC has limited our understanding of the nature of these circuit transformations. Here, we combine virus-based genetic access with electrophysiological and optogenetic approaches to identify a large family of excitatory, cholecystokinin-expressing thalamic projection neurons in the ICC of the Mongolian gerbil. We show that these neurons form a distinct cell type, displaying uniform morphology and intrinsic firing features, and provide powerful, spatially restricted excitation exclusively to the ventral auditory thalamus. In vivo, these neurons consistently exhibit V-shaped receptive field properties but strikingly diverse temporal responses to sound. Our results indicate that temporal response diversity is maintained within this population of otherwise uniform cells in the ICC and then relayed to cortex through spatially restricted thalamic subdomains.


Asunto(s)
Vías Auditivas/metabolismo , Colecistoquinina/metabolismo , Potenciales Evocados Auditivos , Mesencéfalo/metabolismo , Neuronas/metabolismo , Tálamo/metabolismo , Animales , Femenino , Gerbillinae , Masculino
3.
Dev Dyn ; 252(1): 10-26, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35705527

RESUMEN

Acoustic communication relies crucially on accurate interpretation of information about the intensity, frequency, timing, and location of diverse sound stimuli in the environment. To meet this demand, neurons along different levels of the auditory system form precisely organized neural circuits. The assembly of these precise circuits requires tight regulation and coordination of multiple developmental processes. Several groups of axon guidance molecules have proven critical in controlling these processes. Among them, the family of Eph receptors and their ephrin ligands emerge as one group of key players. They mediate diverse functions at multiple levels of the auditory pathway, including axon guidance and targeting, topographic map formation, as well as cell migration and tissue pattern formation. Here, we review our current knowledge of how Eph and ephrin molecules regulate different processes in the development and maturation of central auditory circuits.


Asunto(s)
Vías Auditivas , Efrinas , Vías Auditivas/metabolismo , Neuronas/metabolismo , Receptores de la Familia Eph/metabolismo , Transducción de Señal/fisiología
4.
J Neurosci ; 42(32): 6211-6220, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35790402

RESUMEN

Exposure to nontraumatic noise in vivo drives long-lasting changes in auditory nerve synapses, which may influence hearing, but the induction mechanisms are not known. We mimicked activity in acute slices of the cochlear nucleus from mice of both sexes by treating them with high potassium, after which voltage-clamp recordings from bushy cells indicated that auditory nerve synapses had reduced EPSC amplitude, quantal size, and vesicle release probability (P r). The effects of high potassium were prevented by blockers of nitric oxide (NO) synthase and protein kinase A. Treatment with the NO donor, PAPA-NONOate, also decreased P r, suggesting NO plays a central role in inducing synaptic changes. To identify the source of NO, we activated auditory nerve fibers specifically using optogenetics. Strobing for 2 h led to decreased EPSC amplitude and P r, which was prevented by antagonists against ionotropic glutamate receptors and NO synthase. This suggests that the activation of AMPA and NMDA receptors in postsynaptic targets of auditory nerve fibers drives release of NO, which acts retrogradely to cause long-term changes in synaptic function in auditory nerve synapses. This may provide insight into preventing or treating disorders caused by noise exposure.SIGNIFICANCE STATEMENT Auditory nerve fibers undergo long-lasting changes in synaptic properties in response to noise exposure in vivo, which may contribute to changes in hearing. Here, we investigated the cellular mechanisms underlying induction of synaptic changes using high potassium and optogenetic stimulation in vitro and identified important signaling pathways using pharmacology. Our results suggest that auditory nerve activity drives postsynaptic depolarization through AMPA and NMDA receptors, leading to the release of nitric oxide, which acts retrogradely to regulate presynaptic neurotransmitter release. These experiments revealed that auditory nerve synapses are unexpectedly sensitive to activity and can show dramatic, long-lasting changes in a few hours that could affect hearing.


Asunto(s)
Núcleo Coclear , Óxido Nítrico , Animales , Vías Auditivas/metabolismo , Nervio Coclear/fisiología , Núcleo Coclear/fisiología , Femenino , Masculino , Ratones , Plasticidad Neuronal/fisiología , Óxido Nítrico/metabolismo , Potasio/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo
5.
Development ; 147(21)2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32747436

RESUMEN

Fragile X mental retardation protein (FMRP) is an RNA-binding protein abundant in the nervous system. Functional loss of FMRP leads to sensory dysfunction and severe intellectual disabilities. In the auditory system, FMRP deficiency alters neuronal function and synaptic connectivity and results in perturbed processing of sound information. Nevertheless, roles of FMRP in embryonic development of the auditory hindbrain have not been identified. Here, we developed high-specificity approaches to genetically track and manipulate throughout development of the Atoh1+ neuronal cell type, which is highly conserved in vertebrates, in the cochlear nucleus of chicken embryos. We identified distinct FMRP-containing granules in the growing axons of Atoh1+ neurons and post-migrating NM cells. FMRP downregulation induced by CRISPR/Cas9 and shRNA techniques resulted in perturbed axonal pathfinding, delay in midline crossing, excess branching of neurites, and axonal targeting errors during the period of circuit development. Together, these results provide the first in vivo identification of FMRP localization and actions in developing axons of auditory neurons, and demonstrate the importance of investigating early embryonic alterations toward understanding the pathogenesis of neurodevelopmental disorders.


Asunto(s)
Vías Auditivas/embriología , Vías Auditivas/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Rombencéfalo/embriología , Rombencéfalo/metabolismo , Animales , Axones/metabolismo , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Embrión de Pollo , Pollos , Dendritas/metabolismo , Células-Madre Neurales/metabolismo , Terminales Presinápticos/metabolismo , ARN Interferente Pequeño/metabolismo , Sinapsis/metabolismo , Factores de Tiempo
6.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37511622

RESUMEN

Hyperacusis, i.e., an increased sensitivity to sounds, is described in several neurodevelopmental disorders (NDDs), including Fragile X Syndrome (FXS). The mechanisms underlying hyperacusis in FXS are still largely unknown and effective therapies are lacking. Big conductance calcium-activated potassium (BKCa) channels were proposed as a therapeutic target to treat several behavioral disturbances in FXS preclinical models, but their role in mediating their auditory alterations was not specifically addressed. Furthermore, studies on the acoustic phenotypes of FXS animal models mostly focused on central rather than peripheral auditory pathways. Here, we provided an extensive characterization of the peripheral auditory phenotype of the Fmr1-knockout (KO) mouse model of FXS at adulthood. We also assessed whether the acute administration of Chlorzoxazone, a BKCa agonist, could rescue the auditory abnormalities of adult mutant mice. Fmr1-KO mice both at 3 and 6 months showed a hyperacusis-like startle phenotype with paradoxically reduced auditory brainstem responses associated with a loss of ribbon synapses in the inner hair cells (IHCs) compared to their wild-type (WT) littermates. BKCa expression was markedly reduced in the IHCs of KOs compared to WT mice, but only at 6 months, when Chlorzoxazone rescued mutant auditory dysfunction. Our findings highlight the age-dependent and progressive contribution of peripheral mechanisms and BKCa channels to adult hyperacusis in FXS, suggesting a novel therapeutic target to treat auditory dysfunction in NDDs.


Asunto(s)
Síndrome del Cromosoma X Frágil , Hiperacusia , Animales , Ratones , Vías Auditivas/metabolismo , Clorzoxazona , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio , Ratones Noqueados
7.
J Neurosci ; 41(13): 2930-2943, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33574178

RESUMEN

Cochlear outer hair cells (OHCs) are known to uniquely participate in auditory processing through their electromotility, and like inner hair cells, are also capable of releasing vesicular glutamate onto spiral ganglion (SG) neurons: in this case, onto the sparse Type II SG neurons. However, unlike glutamate signaling at the inner hair cell-Type I SG neuron synapse, which is robust across a wide spectrum of sound intensities, glutamate signaling at the OHC-Type II SG neuron synapse is weaker and has been hypothesized to occur only at intense, possibly damaging sound levels. Here, we tested the ability of the OHC-Type II SG pathway to signal to the brain in response to moderate, nondamaging sound (80 dB SPL) as well as to intense sound (115 dB SPL). First, we determined the VGluTs associated with OHC signaling and then confirmed the loss of glutamatergic synaptic transmission from OHCs to Type II SG neurons in KO mice using dendritic patch-clamp recordings. Next, we generated genetic mouse lines in which vesicular glutamate release occurs selectively from OHCs, and then assessed c-Fos expression in the cochlear nucleus in response to sound. From these analyses, we show, for the first time, that glutamatergic signaling at the OHC-Type II SG neuron synapse is capable of activating cochlear nucleus neurons, even at moderate sound levels.SIGNIFICANCE STATEMENT Evidence suggests that cochlear outer hair cells (OHCs) release glutamate onto Type II spiral ganglion neurons only when exposed to loud sound, and that Type II neurons are activated by tissue damage. Knowing whether moderate level sound, without tissue damage, activates this pathway has functional implications for this fundamental auditory pathway. We first determined that OHCs rely largely on VGluT3 for synaptic glutamate release. We then used a genetically modified mouse line in which OHCs, but not inner hair cells, release vesicular glutamate to demonstrate that moderate sound exposure activates cochlear nucleus neurons via the OHC-Type II spiral ganglion pathway. Together, these data indicate that glutamate signaling at the OHC-Type II afferent synapse participates in auditory function at moderate sound levels.


Asunto(s)
Estimulación Acústica/métodos , Núcleo Coclear/metabolismo , Ácido Glutámico/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Neuronas/metabolismo , Ganglio Espiral de la Cóclea/metabolismo , Vías Aferentes/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animales , Vías Auditivas/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
8.
Neurobiol Learn Mem ; 189: 107589, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35124220

RESUMEN

Increasing evidence has shown that noise overexposure could lead to impaired hippocampal function. Hippocampal alteration is also observed in several auditory deficits, including hearing loss, and tinnitus. Therefore, the functions of hearing and cognition interact with each other. Here, we summarize the evidence that noise affects the hippocampus from aspects of behavior, neurogenesis, ultrastructure, neurotransmission, other biomarkers, and electrophysiology. We also address hippocampal alterations in auditory disorders, including hearing loss and tinnitus. Based on the current state of the field, we point out several aspects that need further investigation. This review is not only to provide a comprehensive summary of the current state of the field but to emphasize that hearing matters in cognition and pave the way for future research.


Asunto(s)
Vías Auditivas , Acúfeno , Vías Auditivas/metabolismo , Hipocampo/metabolismo , Humanos , Neurogénesis , Ruido , Acúfeno/metabolismo
9.
Pflugers Arch ; 473(5): 823-840, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33336302

RESUMEN

Age-related hearing loss (ARHL) is the most prevalent sensory deficit in the elderly and constitutes the third highest risk factor for dementia. Lifetime noise exposure, genetic predispositions for degeneration, and metabolic stress are assumed to be the major causes of ARHL. Both noise-induced and hereditary progressive hearing have been linked to decreased cell surface expression and impaired conductance of the potassium ion channel KV7.4 (KCNQ4) in outer hair cells, inspiring future therapies to maintain or prevent the decline of potassium ion channel surface expression to reduce ARHL. In concert with KV7.4 in outer hair cells, KV7.1 (KCNQ1) in the stria vascularis, calcium-activated potassium channels BK (KCNMA1) and SK2 (KCNN2) in hair cells and efferent fiber synapses, and KV3.1 (KCNC1) in the spiral ganglia and ascending auditory circuits share an upregulated expression or subcellular targeting during final differentiation at hearing onset. They also share a distinctive fragility for noise exposure and age-dependent shortfalls in energy supply required for sustained surface expression. Here, we review and discuss the possible contribution of select potassium ion channels in the cochlea and auditory pathway to ARHL. We postulate genes, proteins, or modulators that contribute to sustained ion currents or proper surface expressions of potassium channels under challenging conditions as key for future therapies of ARHL.


Asunto(s)
Vías Auditivas/metabolismo , Cóclea/metabolismo , Canales de Potasio/metabolismo , Presbiacusia/metabolismo , Animales , Humanos , Canales de Potasio/genética , Presbiacusia/genética
10.
Cell Tissue Res ; 383(2): 655-666, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33156384

RESUMEN

The auditory system comprises the auditory periphery, engaged in sound transduction and the central auditory system, implicated in auditory information processing and perception. Recently, evidence mounted that the mammalian peripheral and central auditory systems share a number of genes critical for proper development and function. This bears implication for auditory rehabilitation and evolution of the auditory system. To analyze to which extent microRNAs (miRNAs) belong to genes shared between both systems, we characterize the expression pattern of 12 cochlea-abundant miRNAs in the central auditory system. Quantitative real-time PCR (qRT-PCR) demonstrated expression of all 12 genes in the cochlea, the auditory hindbrain and the non-auditory prefrontal cortex (PFC) at embryonic stage (E)16 and postnatal stages (P)0 and P30. Eleven of them showed differences in expression between tissues and nine between the developmental time points. Hierarchical cluster analysis revealed that the temporal expression pattern in the auditory hindbrain was more similar to the PFC than to the cochlea. Spatiotemporal expression analysis by RNA in situ hybridization demonstrated widespread expression throughout the cochlear nucleus complex (CNC) and the superior olivary complex (SOC) during postnatal development. Altogether, our data indicate that miRNAs represent a relevant class of genetic factors functioning across the auditory system. Given the importance of gene regulatory network (GRN) components for development, physiology and evolution, the 12 miRNAs provide promising entry points to gain insights into their molecular underpinnings in the auditory system.


Asunto(s)
Vías Auditivas/metabolismo , Cóclea/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mamíferos/genética , MicroARNs/genética , Rombencéfalo/metabolismo , Animales , Corteza Auditiva/metabolismo , Núcleo Coclear/metabolismo , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Corteza Prefrontal/metabolismo , Complejo Olivar Superior/metabolismo
11.
Exp Mol Pathol ; 119: 104605, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33453279

RESUMEN

Acoustic trauma damages inner ear neural structures including cochlear hair cells which result in hearing loss and neurotransmitter imbalances within the synapses of the central auditory pathway. Disruption of GABA/glutamate levels underlies, tinnitus, a phantom perception of sound that persists post-exposure to blast noise which may manifest in tandem with acute/chronic loss of hearing. Many putative theories explain tinnitus physiology based on indirect and direct assays in animal models and humans, although there is no comprehensive evidence to explain the phenomenon. Here, GABA/glutamate levels were imaged and quantified in a blast overpressure model of chinchillas using Fourier transform ion cyclotron resonance mass spectrometry imaging. The direct measurement from whole-brain sections identified the relative levels of GABA/glutamate in the central auditory neuraxis centers including the cochlear nucleus, inferior colliculus, and auditory cortex. These preliminary results provide insight on the homeostasis of GABA/glutamate within whole-brain sections of chinchilla for investigation of the pathomechanism of blast-induced tinnitus.


Asunto(s)
Vías Auditivas/metabolismo , Ácido Glutámico/metabolismo , Espectrometría de Masas , Presión , Ácido gamma-Aminobutírico/metabolismo , Animales , Vías Auditivas/diagnóstico por imagen , Chinchilla , Iones , Masculino
12.
Proc Natl Acad Sci U S A ; 115(50): 12811-12816, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30463957

RESUMEN

Spontaneous excitatory postsynaptic currents (sEPSCs) measured from the first synapse in the mammalian auditory pathway reach a large mean amplitude with a high level of variance (CV between 0.3 and 1). This has led some to propose that each inner hair cell (IHC) ribbon-type active zone (AZ), on average, releases ∼6 synaptic vesicles (SVs) per sEPSC in a coordinated manner. If true, then the predicted change in membrane capacitance (Cm) for such multivesicular fusion events would equate to ∼300 attofarads (aF). Here, we performed cell-attached Cm measurements to directly examine the size of fusion events at the basolateral membrane of IHCs where the AZs are located. The frequency of events depended on the membrane potential and the expression of Cav1.3, the principal Ca2+-channel type of IHCs. Fusion events averaged 40 aF, which equates to a normal-sized SV with an estimated diameter of 37 nm. The calculated SV volumes showed a high degree of variance (CV > 0.6). These results indicate that SVs fused individually with the plasma membrane during spontaneous and evoked release and SV volume may contribute more variability in EPSC amplitude than previously assumed.


Asunto(s)
Exocitosis/fisiología , Células Ciliadas Auditivas Internas/fisiología , Vesículas Sinápticas/fisiología , Animales , Vías Auditivas/metabolismo , Vías Auditivas/fisiología , Calcio/metabolismo , Membrana Celular/metabolismo , Membrana Celular/fisiología , Citoesqueleto/fisiología , Capacidad Eléctrica , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Vestibulares/metabolismo , Células Ciliadas Vestibulares/fisiología , Masculino , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Sinapsis/metabolismo , Vesículas Sinápticas/metabolismo
13.
Neural Plast ; 2021: 8833087, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33510780

RESUMEN

Accumulating evidence implicates a role for brain structures outside the ascending auditory pathway in tinnitus, the phantom perception of sound. In addition to other factors such as age-dependent hearing loss, high-level sound exposure is a prominent cause of tinnitus. Here, we examined how noise exposure altered the distribution of excitatory and inhibitory synaptic inputs in the guinea pig hippocampus and determined whether these changes were associated with tinnitus. In experiment one, guinea pigs were overexposed to unilateral narrow-band noise (98 dB SPL, 2 h). Two weeks later, the density of excitatory (VGLUT-1/2) and inhibitory (VGAT) synaptic terminals in CA1, CA3, and dentate gyrus hippocampal subregions was assessed by immunohistochemistry. Overall, VGLUT-1 density primarily increased, while VGAT density decreased significantly in many regions. Then, to assess whether the noise-induced alterations were persistent and related to tinnitus, experiment two utilized a noise-exposure paradigm shown to induce tinnitus and assessed tinnitus development which was assessed using gap-prepulse inhibition of the acoustic startle (GPIAS). Twelve weeks after sound overexposure, changes in excitatory synaptic terminal density had largely recovered regardless of tinnitus status, but the recovery of GABAergic terminal density was dramatically different in animals expressing tinnitus relative to animals resistant to tinnitus. In resistant animals, inhibitory synapse density recovered to preexposure levels, but in animals expressing tinnitus, inhibitory synapse density remained chronically diminished. Taken together, our results suggest that noise exposure induces striking changes in the balance of excitatory and inhibitory synaptic inputs throughout the hippocampus and reveal a potential role for rebounding inhibition in the hippocampus as a protective factor leading to tinnitus resilience.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Hipocampo/metabolismo , Ruido/efectos adversos , Acúfeno/metabolismo , Proteínas de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Estimulación Acústica/efectos adversos , Animales , Vías Auditivas/metabolismo , Vías Auditivas/patología , Femenino , Neuronas GABAérgicas/química , Ácido Glutámico/análisis , Ácido Glutámico/metabolismo , Cobayas , Hipocampo/patología , Masculino , Sinapsis/química , Sinapsis/metabolismo , Acúfeno/patología , Proteínas de Transporte Vesicular de Glutamato/análisis , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/análisis
14.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799503

RESUMEN

Growth hormone (GH) plays an important role in auditory development during the embryonic stage. Exogenous agents such as sound, noise, drugs or trauma, can induce the release of this hormone to perform a protective function and stimulate other mediators that protect the auditory pathway. In addition, GH deficiency conditions hearing loss or central auditory processing disorders. There are promising animal studies that reflect a possible regenerative role when exogenous GH is used in hearing impairments, demonstrated in in vivo and in vitro studies, and also, even a few studies show beneficial effects in humans presented and substantiated in the main text, although they should not exaggerate the main conclusions.


Asunto(s)
Vías Auditivas/metabolismo , Hormona del Crecimiento/genética , Pérdida Auditiva Funcional/genética , Pérdida Auditiva Sensorineural/genética , Hipocampo/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Animales , Corteza Auditiva/metabolismo , Corteza Auditiva/patología , Vías Auditivas/patología , Cóclea/metabolismo , Cóclea/patología , Nervio Coclear/metabolismo , Nervio Coclear/patología , Regulación de la Expresión Génica , Hormona del Crecimiento/metabolismo , Pérdida Auditiva Funcional/metabolismo , Pérdida Auditiva Funcional/fisiopatología , Pérdida Auditiva Sensorineural/metabolismo , Pérdida Auditiva Sensorineural/fisiopatología , Hipocampo/patología , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Regeneración Nerviosa/fisiología , Ruido/prevención & control
15.
J Neurosci ; 39(43): 8424-8438, 2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31511429

RESUMEN

Discriminating between auditory signals of different affective value is critical for the survival and success of social interaction of an individual. Anatomical, electrophysiological, imaging, and optogenetics approaches have established that the auditory cortex (AC) by providing auditory information to the lateral amygdala (LA) via long-range excitatory glutamatergic projections has an impact on sound-driven aversive/fear behavior. Here we test the hypothesis that the LA also receives GABAergic projections from the cortex. We addressed this fundamental question by taking advantage of optogenetics, anatomical, and electrophysiology approaches and directly examining the functional effects of cortical GABAergic inputs to LA neurons of the mouse (male/female) AC. We found that the cortex, via cortico-lateral-amygdala somatostatin neurons (CLA-SOM), has a direct inhibitory influence on the output of the LA principal neurons. Our results define a CLA long-range inhibitory circuit (CLA-SOM inhibitory projections → LA principal neurons) underlying the control of spike timing/generation in LA and LA-AC projecting neurons, and attributes a specific function to a genetically defined type of cortical long-range GABAergic neurons in CLA communication.SIGNIFICANCE STATEMENT It is very well established that cortical auditory inputs to the lateral amygdala are exclusively excitatory and that cortico-amygdala neuronal activity has been shown to be involved in sound-driven aversive/fear behavior. Here, for the first time, we show that the lateral amygdala receives long-range GABAergic projection from the auditory cortex and these form direct monosynaptic inhibitory connections onto lateral amygdala principal neurons. Our results define a cellular basis for direct inhibitory communication from auditory cortex to the lateral amygdala, suggesting that the timing and ratio of excitation and inhibition, two opposing forces in the mammalian cerebral cortex, can dynamically affect the output of the lateral amygdala, providing a general mechanism for fear/aversive behavior driven by auditory stimuli.


Asunto(s)
Amígdala del Cerebelo/fisiología , Corteza Auditiva/fisiología , Vías Auditivas/fisiología , Neuronas/fisiología , Amígdala del Cerebelo/metabolismo , Animales , Corteza Auditiva/metabolismo , Vías Auditivas/metabolismo , Miedo/fisiología , Neuronas GABAérgicas/metabolismo , Ácido Glutámico/metabolismo , Ratones , Ratones Transgénicos , Inhibición Neural/fisiología , Neuronas/metabolismo , Somatostatina/metabolismo
16.
J Neurosci ; 39(16): 2981-2994, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30679394

RESUMEN

GluA2-lacking Ca2+-permeable AMPARs (CP-AMPARs) play integral roles in synaptic plasticity and can mediate excitotoxic cellular signaling at glutamatergic synapses. However, the developmental profile of functional CP-AMPARs at the auditory brainstem remains poorly understood. Through a combination of electrophysiological and live-cell Ca2+ imaging from mice of either sex, we show that the synaptic release of glutamate from the calyx of Held nerve terminal activates CP-AMPARs in the principal cells of the medial nucleus of the trapezoid body in the brainstem. This leads to significant Ca2+ influx through these receptors before the onset of hearing at postnatal day 12 (P12). Using a selective open channel blocker of CP-AMPARs, IEM-1460, we estimate that ∼80% of the AMPAR population are permeable to Ca2+ at immature P4-P5 synapses. However, after the onset of hearing, Ca2+ influx through these receptors was greatly reduced. We estimate that CP-AMPARs comprise approximately 40% and 33% of the AMPAR population at P18-P22 and P30-P34, respectively. By quantifying the rate of EPSC block by IEM-1460, we found an increased heterogeneity in glutamate release probability for adult-like calyces (P30-P34). Using tetraethylammonium (TEA), a presynaptic potassium channel blocker, we show that the apparent reduction of CP-AMPARs in more mature synapses is not a consequence of presynaptic action potential (AP) speeding. Finally, through postsynaptic AP recordings, we show that inhibition of CP-AMPARs reduces spike fidelity in juvenile synapses, but not in more mature synapses. We conclude that the expression of functional CP-AMPARs declines over early postnatal development in the calyx of Held synapse.SIGNIFICANCE STATEMENT The calyx of Held synapse is pivotal to the circuitry that computes sound localization. Postsynaptic Ca2+ influx via AMPARs may be critical for signaling the maturation of this brainstem synapse. The GluA4 subunit may dominate the AMPAR complex at mature synapses because of its fast gating kinetics and large unitary conductance. The expectation is that AMPARs dominated by GluA4 subunits should be highly Ca2+ permeable. However, we find that Ca2+-permeable AMPAR expression declines during postnatal development. Using the rate of EPSC block by IEM-1460, an open channel blocker of Ca2+-permeable AMPARs, we propose a novel method to determine glutamate release probability and uncover an increased heterogeneity in release probability for more mature calyces of Held nerve terminals.


Asunto(s)
Vías Auditivas/fisiología , Tronco Encefálico/fisiología , Calcio/metabolismo , Receptores AMPA/metabolismo , Localización de Sonidos/fisiología , Sinapsis/fisiología , Animales , Vías Auditivas/metabolismo , Tronco Encefálico/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Ratones , Plasticidad Neuronal , Técnicas de Placa-Clamp , Sinapsis/metabolismo , Transmisión Sináptica/fisiología
17.
J Neurosci ; 39(50): 9989-10001, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31704784

RESUMEN

Hearing loss is the biggest risk factor for tinnitus, and hearing-loss-related pathological changes in the auditory pathway have been hypothesized as the mechanism underlying tinnitus. However, due to the comorbidity of tinnitus and hearing loss, it has been difficult to differentiate between neural correlates of tinnitus and consequences of hearing loss. In this study, we dissociated tinnitus and hearing loss in FVB mice, which exhibit robust resistance to tinnitus following monaural noise-induced hearing loss. Furthermore, knock-down of glutamate decarboxylase 65 (GAD65) expression in auditory cortex (AI) by RNA interference gave rise to tinnitus in normal-hearing FVB mice. We found that tinnitus was significantly correlated with downregulation of GAD65 in the AI. By contrast, cortical map distortions, which have been hypothesized as a mechanism underlying tinnitus, were correlated with hearing loss but not tinnitus. Our findings suggest new strategies for the rehabilitation of tinnitus and other phantom sensation, such as phantom pain.SIGNIFICANCE STATEMENT Hearing loss is the biggest risk factor for tinnitus in humans. Most animal models of tinnitus also exhibit comorbid hearing loss, making it difficult to dissociate the mechanisms underlying tinnitus from mere consequences of hearing loss. Here we show that, although both C57BL/6 and FVB mice exhibited similar noise-induced hearing threshold increase, only C57BL/6, but not FVB, mice developed tinnitus following noise exposure. Although both strains showed frequency map reorganization following noise-induced hearing loss, only C57BL/6 mice had reduced glutamate decarboxylase 65 (GAD65) expression in the auditory cortex (AI). Knocking down GAD65 expression in the AI resulted in tinnitus in normal-hearing FVB mice. Our results suggest that reduced inhibitory neuronal function, but not sensory map reorganization, underlies noise-induced tinnitus.


Asunto(s)
Corteza Auditiva/metabolismo , Vías Auditivas/metabolismo , Regulación hacia Abajo , Glutamato Descarboxilasa/metabolismo , Pérdida Auditiva Provocada por Ruido/metabolismo , Plasticidad Neuronal/fisiología , Acúfeno/metabolismo , Animales , Corteza Auditiva/fisiopatología , Vías Auditivas/fisiopatología , Percepción Auditiva/fisiología , Mapeo Encefálico , Pérdida Auditiva Provocada por Ruido/fisiopatología , Masculino , Ratones , Acúfeno/fisiopatología
18.
Neurochem Res ; 45(1): 68-82, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31664654

RESUMEN

Hapln4 is a link protein which stabilizes the binding between lecticans and hyaluronan in perineuronal nets (PNNs) in specific brain regions, including the medial nucleus of the trapezoid body (MNTB). The aim of this study was: (1) to reveal possible age-related alterations in the extracellular matrix composition in the MNTB and inferior colliculus, which was devoid of Hapln4 and served as a negative control, (2) to determine the impact of the Hapln4 deletion on the values of the ECS diffusion parameters in young and aged animals and (3) to verify that PNNs moderate age-related changes in the ECS diffusion, and that Hapln4-brevican complex is indispensable for the correct protective function of the PNNs. To achieve this, we evaluated the ECS diffusion parameters using the real-time iontophoretic method in the selected region in young adult (3 to 6-months-old) and aged (12 to 18-months-old) wild type and Hapln4 knock-out (KO) mice. The results were correlated with an immunohistochemical analysis of the ECM composition and astrocyte morphology. We report that the ECM composition is altered in the aged MNTB and aging is a critical point, revealing the effect of Hapln4 deficiency on the ECS diffusion. All of our findings support the hypothesis that the ECM changes in the MNTB of aged KO animals affect the ECS parameters indirectly, via morphological changes of astrocytes, which are in direct contact with synapses and can be influenced by the ongoing synaptic transmission altered by shifts in the ECM composition.


Asunto(s)
Envejecimiento/metabolismo , Vías Auditivas/metabolismo , Difusión , Proteínas de la Matriz Extracelular/deficiencia , Espacio Extracelular/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Cuerpo Trapezoide/metabolismo , Envejecimiento/patología , Animales , Vías Auditivas/patología , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Cultivo de Órganos , Nervios Periféricos/metabolismo , Nervios Periféricos/patología , Deficiencia de Proteína/metabolismo , Deficiencia de Proteína/patología , Cuerpo Trapezoide/patología
19.
J Neurosci ; 38(12): 2967-2980, 2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29439165

RESUMEN

Tonotopic differentiation is fundamental for signal processing in the auditory system. However, when and how this differentiation arises remain elusive. We addressed this issue using electrophysiology and immunohistochemistry in nucleus magnocellularis of chickens of both sexes, which is known to differ in the expression of Kv1.1 channels depending on characteristic frequency (CF). Just after hearing onset (embryonic day 12-14), Kv1 current gradually increased to a slightly larger extent in neurons with higher CF, causing a tonotopic difference of Kv1 current before hatch. However, after hatch, a much larger increase of Kv1 current occurred, particularly in higher-CF neurons, due to an augmentation of Kv1.1 expression at the plasma membrane. This later change in expression led to the large tonotopic difference of Kv1 current characteristic of mature animals. Attenuation of auditory input by inducing conductive or sensorineural hearing loss around hatch suppressed the differentiation in a level-dependent manner. Moreover, elevation of auditory input during embryonic periods could not reproduce the differentiation, suggesting that the capacity of neurons to drive Kv1.1 expression via auditory input develops in a cell-specific manner, thus underlying the frequency-specific expression of the channel within the nucleus. The results indicated that the tonotopic differentiation of Kv1.1 in nucleus magnocellularis is partially determined before hatch, but largely driven by afferent input after hatch. Our results highlight the importance of neuronal capacity for sound to drive ion channel expression as well as the level of auditory experience in the frequency tuning of brainstem auditory circuits.SIGNIFICANCE STATEMENT Tuning-frequency-specific expression of ion channels is a prerequisite for auditory system function, but its underlying mechanisms remain unclear. Here, we revealed in avian cochlear nucleus that the expression of Kv1.1 became more dependent on auditory input at a late period of maturation in neurons tuned to higher-frequency sound, leading to frequency-specific Kv1.1 expression. Attenuation of auditory input during this period suppressed the differentiation in a level-dependent manner, whereas elevation of input in earlier periods could not reproduce the differentiation. Thus, the capacity of neurons to drive Kv1.1 expression via auditory input develops in a cell-specific manner and directs differentiation, highlighting the importance of neuronal character as well as the level of input in the frequency tuning of auditory circuits.


Asunto(s)
Percepción Auditiva/fisiología , Núcleo Coclear/metabolismo , Canal de Potasio Kv.1.1/biosíntesis , Neurogénesis/fisiología , Estimulación Acústica , Animales , Vías Auditivas/metabolismo , Embrión de Pollo , Pollos , Núcleo Coclear/embriología , Núcleo Coclear/crecimiento & desarrollo , Femenino , Audición/fisiología , Masculino
20.
J Physiol ; 597(22): 5469-5493, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31529505

RESUMEN

KEY POINTS: Loss of the calcium sensor otoferlin disrupts neurotransmission from inner hair cells. Central auditory nuclei are functionally denervated in otoferlin knockout mice (Otof KOs) via gene ablation confined to the periphery. We employed juvenile and young adult Otof KO mice (postnatal days (P)10-12 and P27-49) as a model for lacking spontaneous activity and deafness, respectively. We studied the impact of peripheral activity on synaptic refinement in the sound localization circuit from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO). MNTB in vivo recordings demonstrated drastically reduced spontaneous spiking and deafness in Otof KOs. Juvenile KOs showed impaired synapse elimination and strengthening, manifested by broader MNTB-LSO inputs, imprecise MNTB-LSO topography and weaker MNTB-LSO fibres. The impairments persisted into young adulthood. Further functional refinement after hearing onset was undetected in young adult wild-types. Collectively, activity deprivation confined to peripheral protein loss impairs functional MNTB-LSO refinement during a critical prehearing period. ABSTRACT: Circuit refinement is critical for the developing sound localization pathways in the auditory brainstem. In prehearing mice (hearing onset around postnatal day (P)12), spontaneous activity propagates from the periphery to central auditory nuclei. At the glycinergic projection from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO) of neonatal mice, super-numerous MNTB fibres innervate a given LSO neuron. Between P4 and P9, MNTB fibres are functionally eliminated, whereas the remaining fibres are strengthened. Little is known about MNTB-LSO circuit refinement after P20. Moreover, MNTB-LSO refinement upon activity deprivation confined to the periphery is largely unexplored. This leaves a considerable knowledge gap, as deprivation often occurs in patients with congenital deafness, e.g. upon mutations in the otoferlin gene (OTOF). Here, we analysed juvenile (P10-12) and young adult (P27-49) otoferlin knockout (Otof KO) mice with respect to MNTB-LSO refinement. MNTB in vivo recordings revealed drastically reduced spontaneous activity and deafness in knockouts (KOs), confirming deprivation. As RNA sequencing revealed Otof absence in the MNTB and LSO of wild-types, Otof loss in KOs is specific to the periphery. Functional denervation impaired MNTB-LSO synapse elimination and strengthening, which was assessed by glutamate uncaging and electrical stimulation. Impaired elimination led to imprecise MNTB-LSO topography. Impaired strengthening was associated with lower quantal content per MNTB fibre. In young adult KOs, the MNTB-LSO circuit remained unrefined. Further functional refinement after P12 appeared absent in wild-types. Collectively, we provide novel insights into functional MNTB-LSO circuit maturation governed by a cochlea-specific protein. The central malfunctions in Otof KOs may have implications for patients with sensorineuronal hearing loss.


Asunto(s)
Emparejamiento Cromosómico/fisiología , Nervios Periféricos/fisiología , Localización de Sonidos/fisiología , Animales , Vías Auditivas/metabolismo , Vías Auditivas/fisiología , Femenino , Ácido Glutámico/metabolismo , Glicina/metabolismo , Audición/fisiología , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Neuronas/fisiología , Núcleo Olivar/metabolismo , Núcleo Olivar/fisiología , Nervios Periféricos/metabolismo , Complejo Olivar Superior/metabolismo , Complejo Olivar Superior/fisiología , Transmisión Sináptica/fisiología , Cuerpo Trapezoide/metabolismo , Cuerpo Trapezoide/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA