Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 993
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(9): 1556-1571.e18, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35447072

RESUMEN

SARS-CoV-2 Omicron is highly transmissible and has substantial resistance to neutralization following immunization with ancestral spike-matched vaccines. It is unclear whether boosting with Omicron-matched vaccines would enhance protection. Here, nonhuman primates that received mRNA-1273 at weeks 0 and 4 were boosted at week 41 with mRNA-1273 or mRNA-Omicron. Neutralizing titers against D614G were 4,760 and 270 reciprocal ID50 at week 6 (peak) and week 41 (preboost), respectively, and 320 and 110 for Omicron. 2 weeks after the boost, titers against D614G and Omicron increased to 5,360 and 2,980 for mRNA-1273 boost and 2,670 and 1,930 for mRNA-Omicron, respectively. Similar increases against BA.2 were observed. Following either boost, 70%-80% of spike-specific B cells were cross-reactive against WA1 and Omicron. Equivalent control of virus replication in lower airways was observed following Omicron challenge 1 month after either boost. These data show that mRNA-1273 and mRNA-Omicron elicit comparable immunity and protection shortly after the boost.


Asunto(s)
COVID-19 , SARS-CoV-2 , Vacuna nCoV-2019 mRNA-1273 , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Macaca , ARN Mensajero
2.
Cell ; 185(9): 1572-1587.e11, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35452622

RESUMEN

The large number of spike substitutions in Omicron lineage variants (BA.1, BA.1.1., and BA.2) could jeopardize the efficacy of SARS-CoV-2 vaccines. We evaluated in mice the protective efficacy of the Moderna mRNA-1273 vaccine against BA.1 before or after boosting. Whereas two doses of mRNA-1273 vaccine induced high levels of neutralizing antibodies against historical WA1/2020 strains, lower levels against BA.1 were associated with breakthrough infection and inflammation in the lungs. A primary vaccination series with mRNA-1273.529, an Omicron-matched vaccine, potently neutralized BA.1 but inhibited historical or other SARS-CoV-2 variants less effectively. However, boosting with either mRNA-1273 or mRNA-1273.529 vaccines increased neutralizing titers and protection against BA.1 and BA.2 infection. Nonetheless, the neutralizing antibody titers were higher, and lung viral burden and cytokines were slightly lower in mice boosted with mRNA-1273.529 and challenged with BA.1. Thus, boosting with mRNA-1273 or mRNA-1273.529 enhances protection against Omicron infection with limited differences in efficacy measured.


Asunto(s)
COVID-19 , SARS-CoV-2 , Vacuna nCoV-2019 mRNA-1273 , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Ratones , SARS-CoV-2/genética , Vacunación , Vacunas Sintéticas , Vacunas de ARNm
3.
Nat Immunol ; 22(10): 1306-1315, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34417590

RESUMEN

B.1.351 is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant most resistant to antibody neutralization. We demonstrate how the dose and number of immunizations influence protection. Nonhuman primates received two doses of 30 or 100 µg of Moderna's mRNA-1273 vaccine, a single immunization of 30 µg, or no vaccine. Two doses of 100 µg of mRNA-1273 induced 50% inhibitory reciprocal serum dilution neutralizing antibody titers against live SARS-CoV-2 p.Asp614Gly and B.1.351 of 3,300 and 240, respectively. Higher neutralizing responses against B.1.617.2 were also observed after two doses compared to a single dose. After challenge with B.1.351, there was ~4- to 5-log10 reduction of viral subgenomic RNA and low to undetectable replication in bronchoalveolar lavages in the two-dose vaccine groups, with a 1-log10 reduction in nasal swabs in the 100-µg group. These data establish that a two-dose regimen of mRNA-1273 will be critical for providing upper and lower airway protection against major variants of concern.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Primates/inmunología , SARS-CoV-2/inmunología , Vacuna nCoV-2019 mRNA-1273 , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/virología , Línea Celular , Chlorocebus aethiops , Femenino , Humanos , Macaca mulatta , Masculino , Mesocricetus , Primates/virología , ARN Viral/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación/métodos , Células Vero , Carga Viral/métodos
4.
Immunity ; 55(2): 355-365.e4, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35090580

RESUMEN

SARS-CoV-2 mRNA vaccines confer robust protection against COVID-19, but the emergence of variants has generated concerns regarding the protective efficacy of the currently approved vaccines, which lose neutralizing potency against some variants. Emerging data suggest that antibody functions beyond neutralization may contribute to protection from the disease, but little is known about SARS-CoV-2 antibody effector functions. Here, we profiled the binding and functional capacity of convalescent antibodies and Moderna mRNA-1273 COVID-19 vaccine-induced antibodies across SARS-CoV-2 variants of concern (VOCs). Although the neutralizing responses to VOCs decreased in both groups, the Fc-mediated responses were distinct. In convalescent individuals, although antibodies exhibited robust binding to VOCs, they showed compromised interactions with Fc-receptors. Conversely, vaccine-induced antibodies also bound robustly to VOCs but continued to interact with Fc-receptors and mediate antibody effector functions. These data point to a resilience in the mRNA-vaccine-induced humoral immune response that may continue to offer protection from SARS-CoV-2 VOCs independent of neutralization.


Asunto(s)
Vacuna nCoV-2019 mRNA-1273/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/metabolismo , COVID-19/prevención & control , Receptores Fc/metabolismo , SARS-CoV-2/inmunología , Vacuna nCoV-2019 mRNA-1273/administración & dosificación , Adulto , Anticuerpos Neutralizantes/inmunología , Reacciones Cruzadas/inmunología , Femenino , Interacciones Huésped-Patógeno , Humanos , Masculino , Persona de Mediana Edad , Pruebas de Neutralización , Unión Proteica , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Adulto Joven
5.
Immunity ; 54(9): 2133-2142.e3, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34453880

RESUMEN

SARS-CoV-2 mRNA vaccines have shown remarkable clinical efficacy, but questions remain about the nature and kinetics of T cell priming. We performed longitudinal antigen-specific T cell analyses on healthy SARS-CoV-2-naive and recovered individuals prior to and following mRNA prime and boost vaccination. Vaccination induced rapid antigen-specific CD4+ T cell responses in naive subjects after the first dose, whereas CD8+ T cell responses developed gradually and were variable in magnitude. Vaccine-induced Th1 and Tfh cell responses following the first dose correlated with post-boost CD8+ T cells and neutralizing antibodies, respectively. Integrated analysis revealed coordinated immune responses with distinct trajectories in SARS-CoV-2-naive and recovered individuals. Last, whereas booster vaccination improved T cell responses in SARS-CoV-2-naive subjects, the second dose had little effect in SARS-CoV-2-recovered individuals. These findings highlight the role of rapidly primed CD4+ T cells in coordinating responses to the second vaccine dose in SARS-CoV-2-naive individuals.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , SARS-CoV-2/fisiología , Células TH1/inmunología , Vacuna nCoV-2019 mRNA-1273 , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Vacuna BNT162 , Femenino , Humanos , Inmunidad Celular , Inmunidad Humoral , Inmunización Secundaria , Memoria Inmunológica , Lectinas Tipo C/metabolismo , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Péptidos/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Adulto Joven
6.
Nature ; 630(8018): 950-960, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38749479

RESUMEN

Immune imprinting is a phenomenon in which prior antigenic experiences influence responses to subsequent infection or vaccination1,2. The effects of immune imprinting on serum antibody responses after boosting with variant-matched SARS-CoV-2 vaccines remain uncertain. Here we characterized the serum antibody responses after mRNA vaccine boosting of mice and human clinical trial participants. In mice, a single dose of a preclinical version of mRNA-1273 vaccine encoding Wuhan-1 spike protein minimally imprinted serum responses elicited by Omicron boosters, enabling generation of type-specific antibodies. However, imprinting was observed in mice receiving an Omicron booster after two priming doses of mRNA-1273, an effect that was mitigated by a second booster dose of Omicron vaccine. In both SARS-CoV-2-infected and uninfected humans who received two Omicron-matched boosters after two or more doses of the prototype mRNA-1273 vaccine, spike-binding and neutralizing serum antibodies cross-reacted with Omicron variants as well as more distantly related sarbecoviruses. Because serum neutralizing responses against Omicron strains and other sarbecoviruses were abrogated after pre-clearing with Wuhan-1 spike protein, antibodies induced by XBB.1.5 boosting in humans focus on conserved epitopes targeted by the antecedent mRNA-1273 primary series. Thus, the antibody response to Omicron-based boosters in humans is imprinted by immunizations with historical mRNA-1273 vaccines, but this outcome may be beneficial as it drives expansion of cross-neutralizing antibodies that inhibit infection of emerging SARS-CoV-2 variants and distantly related sarbecoviruses.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Inmunización Secundaria , SARS-CoV-2 , Vacunas de ARNm , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , Vacuna nCoV-2019 mRNA-1273/administración & dosificación , Vacuna nCoV-2019 mRNA-1273/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , China , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/inmunología , Reacciones Cruzadas/inmunología , Epítopos de Linfocito B/inmunología , Vacunas de ARNm/administración & dosificación , Vacunas de ARNm/genética , Vacunas de ARNm/inmunología , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Vacunación
7.
Nature ; 602(7898): 682-688, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35016197

RESUMEN

The Omicron (B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was initially identified in November 2021 in South Africa and Botswana, as well as in a sample from a traveller from South Africa in Hong Kong1,2. Since then, Omicron has been detected globally. This variant appears to be at least as infectious as Delta (B.1.617.2), has already caused superspreader events3, and has outcompeted Delta within weeks in several countries and metropolitan areas. Omicron hosts an unprecedented number of mutations in its spike gene and early reports have provided evidence for extensive immune escape and reduced vaccine effectiveness2,4-6. Here we investigated the virus-neutralizing and spike protein-binding activity of sera from convalescent, double mRNA-vaccinated, mRNA-boosted, convalescent double-vaccinated and convalescent boosted individuals against wild-type, Beta (B.1.351) and Omicron SARS-CoV-2 isolates and spike proteins. Neutralizing activity of sera from convalescent and double-vaccinated participants was undetectable or very low against Omicron compared with the wild-type virus, whereas neutralizing activity of sera from individuals who had been exposed to spike three or four times through infection and vaccination was maintained, although at significantly reduced levels. Binding to the receptor-binding and N-terminal domains of the Omicron spike protein was reduced compared with binding to the wild type in convalescent unvaccinated individuals, but was mostly retained in vaccinated individuals.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/virología , Convalecencia , Evasión Inmune/inmunología , Sueros Inmunes/inmunología , SARS-CoV-2/inmunología , Vacuna nCoV-2019 mRNA-1273/inmunología , Adulto , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Vacuna BNT162/administración & dosificación , Vacuna BNT162/inmunología , COVID-19/transmisión , Femenino , Humanos , Inmunización Secundaria , Modelos Moleculares , Pruebas de Neutralización , SARS-CoV-2/clasificación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
8.
Nature ; 600(7889): 517-522, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34619745

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection produces B cell responses that continue to evolve for at least a year. During that time, memory B cells express increasingly broad and potent antibodies that are resistant to mutations found in variants of concern1. As a result, vaccination of coronavirus disease 2019 (COVID-19) convalescent individuals with currently available mRNA vaccines produces high levels of plasma neutralizing activity against all variants tested1,2. Here we examine memory B cell evolution five months after vaccination with either Moderna (mRNA-1273) or Pfizer-BioNTech (BNT162b2) mRNA vaccine in a cohort of SARS-CoV-2-naive individuals. Between prime and boost, memory B cells produce antibodies that evolve increased neutralizing activity, but there is no further increase in potency or breadth thereafter. Instead, memory B cells that emerge five months after vaccination of naive individuals express antibodies that are similar to those that dominate the initial response. While individual memory antibodies selected over time by natural infection have greater potency and breadth than antibodies elicited by vaccination, the overall neutralizing potency of plasma is greater following vaccination. These results suggest that boosting vaccinated individuals with currently available mRNA vaccines will increase plasma neutralizing activity but may not produce antibodies with equivalent breadth to those obtained by vaccinating convalescent individuals.


Asunto(s)
Vacunas contra la COVID-19/inmunología , Evolución Molecular , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Sintéticas/inmunología , Vacunas de ARNm/inmunología , Vacuna nCoV-2019 mRNA-1273/inmunología , Adulto , Anciano , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Afinidad de Anticuerpos , Vacuna BNT162/inmunología , Estudios de Cohortes , Reacciones Cruzadas , Ensayo de Inmunoadsorción Enzimática , Epítopos de Linfocito B/inmunología , Femenino , Humanos , Masculino , Células B de Memoria/inmunología , Persona de Mediana Edad , Pruebas de Neutralización , Dominios Proteicos/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Adulto Joven
9.
Nature ; 600(7889): 523-529, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34634791

RESUMEN

The emergence of SARS-CoV-2 variants with mutations in major neutralizing antibody-binding sites can affect humoral immunity induced by infection or vaccination1-6. Here we analysed the development of anti-SARS-CoV-2 antibody and T cell responses in individuals who were previously infected (recovered) or uninfected (naive) and received mRNA vaccines to SARS-CoV-2. While individuals who were previously infected sustained higher antibody titres than individuals who were uninfected post-vaccination, the latter reached comparable levels of neutralization responses to the ancestral strain after the second vaccine dose. T cell activation markers measured upon spike or nucleocapsid peptide in vitro stimulation showed a progressive increase after vaccination. Comprehensive analysis of plasma neutralization using 16 authentic isolates of distinct locally circulating SARS-CoV-2 variants revealed a range of reduction in the neutralization capacity associated with specific mutations in the spike gene: lineages with E484K and N501Y/T (for example, B.1.351 and P.1) had the greatest reduction, followed by lineages with L452R (for example, B.1.617.2). While both groups retained neutralization capacity against all variants, plasma from individuals who were previously infected and vaccinated displayed overall better neutralization capacity than plasma from individuals who were uninfected and also received two vaccine doses, pointing to vaccine boosters as a relevant future strategy to alleviate the effect of emerging variants on antibody neutralizing activity.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/epidemiología , COVID-19/virología , SARS-CoV-2/inmunología , Linfocitos T/inmunología , Vacunas Sintéticas/inmunología , Vacunas de ARNm/inmunología , Vacuna nCoV-2019 mRNA-1273/inmunología , Adulto , Anciano , Anticuerpos Neutralizantes/inmunología , Vacuna BNT162/inmunología , Femenino , Personal de Salud/estadística & datos numéricos , Humanos , Inmunidad Humoral , Masculino , Persona de Mediana Edad , Mutación , Estudios Retrospectivos , SARS-CoV-2/clasificación , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
10.
Nature ; 592(7855): 616-622, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33567448

RESUMEN

Here we report on the antibody and memory B cell responses of a cohort of 20 volunteers who received the Moderna (mRNA-1273) or Pfizer-BioNTech (BNT162b2) vaccine against SARS-CoV-21-4. Eight weeks after the second injection of vaccine, volunteers showed high levels of IgM and IgG anti-SARS-CoV-2 spike protein (S) and receptor-binding-domain (RBD) binding titre. Moreover, the plasma neutralizing activity and relative numbers of RBD-specific memory B cells of vaccinated volunteers were equivalent to those of individuals who had recovered from natural infection5,6. However, activity against SARS-CoV-2 variants that encode E484K-, N501Y- or K417N/E484K/N501-mutant S was reduced by a small-but significant-margin. The monoclonal antibodies elicited by the vaccines potently neutralize SARS-CoV-2, and target a number of different RBD epitopes in common with monoclonal antibodies isolated from infected donors5-8. However, neutralization by 14 of the 17 most-potent monoclonal antibodies that we tested was reduced or abolished by the K417N, E484K or N501Y mutation. Notably, these mutations were selected when we cultured recombinant vesicular stomatitis virus expressing SARS-CoV-2 S in the presence of the monoclonal antibodies elicited by the vaccines. Together, these results suggest that the monoclonal antibodies in clinical use should be tested against newly arising variants, and that mRNA vaccines may need to be updated periodically to avoid a potential loss of clinical efficacy.


Asunto(s)
Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas Sintéticas/inmunología , Vacuna nCoV-2019 mRNA-1273 , Adulto , Anciano , Anticuerpos Monoclonales/sangre , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Vacuna BNT162 , Vacunas contra la COVID-19/genética , Microscopía por Crioelectrón , Epítopos de Linfocito B/química , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/ultraestructura , Femenino , Humanos , Inmunización Secundaria , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Memoria Inmunológica/inmunología , Masculino , Persona de Mediana Edad , Modelos Moleculares , Mutación , Pruebas de Neutralización , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Sintéticas/genética , Vacunas de ARNm
11.
Nature ; 586(7830): 567-571, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32756549

RESUMEN

A vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is needed to control the coronavirus disease 2019 (COVID-19) global pandemic. Structural studies have led to the development of mutations that stabilize Betacoronavirus spike proteins in the prefusion state, improving their expression and increasing immunogenicity1. This principle has been applied to design mRNA-1273, an mRNA vaccine that encodes a SARS-CoV-2 spike protein that is stabilized in the prefusion conformation. Here we show that mRNA-1273 induces potent neutralizing antibody responses to both wild-type (D614) and D614G mutant2 SARS-CoV-2 as well as CD8+ T cell responses, and protects against SARS-CoV-2 infection in the lungs and noses of mice without evidence of immunopathology. mRNA-1273 is currently in a phase III trial to evaluate its efficacy.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Neumonía Viral/inmunología , Neumonía Viral/prevención & control , Vacunas Virales/inmunología , Vacuna nCoV-2019 mRNA-1273 , Animales , Anticuerpos Neutralizantes/inmunología , Betacoronavirus/genética , Linfocitos T CD8-positivos/inmunología , COVID-19 , Vacunas contra la COVID-19 , Ensayos Clínicos Fase III como Asunto , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/virología , Femenino , Pulmón/inmunología , Pulmón/virología , Ratones , Mutación , Nariz/inmunología , Nariz/virología , Neumonía Viral/virología , ARN Mensajero/genética , ARN Viral/genética , SARS-CoV-2 , Células TH1/inmunología , Receptor Toll-Like 4/agonistas , Receptor Toll-Like 4/inmunología , Vacunas Virales/química , Vacunas Virales/genética
12.
N Engl J Med ; 386(21): 2011-2023, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35544369

RESUMEN

BACKGROUND: Vaccination of children to prevent coronavirus disease 2019 (Covid-19) is an urgent public health need. The safety, immunogenicity, and efficacy of the mRNA-1273 vaccine in children 6 to 11 years of age are unknown. METHODS: Part 1 of this ongoing phase 2-3 trial was open label for dose selection; part 2 was an observer-blinded, placebo-controlled expansion evaluation of the selected dose. In part 2, we randomly assigned children (6 to 11 years of age) in a 3:1 ratio to receive two injections of mRNA-1273 (50 µg each) or placebo, administered 28 days apart. The primary objectives were evaluation of the safety of the vaccine in children and the noninferiority of the immune response in these children to that in young adults (18 to 25 years of age) in a related phase 3 trial. Secondary objectives included determination of the incidences of confirmed Covid-19 and severe acute respiratory syndrome coronavirus 2 infection, regardless of symptoms. Interim analysis results are reported. RESULTS: In part 1 of the trial, 751 children received 50-µg or 100-µg injections of the mRNA-1273 vaccine, and on the basis of safety and immunogenicity results, the 50-µg dose level was selected for part 2. In part 2 of the trial, 4016 children were randomly assigned to receive two injections of mRNA-1273 (50 µg each) or placebo and were followed for a median of 82 days (interquartile range, 14 to 94) after the first injection. This dose level was associated with mainly low-grade, transient adverse events, most commonly injection-site pain, headache, and fatigue. No vaccine-related serious adverse events, multisystem inflammatory syndrome in children, myocarditis, or pericarditis were reported as of the data-cutoff date. One month after the second injection (day 57), the neutralizing antibody titer in children who received mRNA-1273 at a 50-µg level was 1610 (95% confidence interval [CI], 1457 to 1780), as compared with 1300 (95% CI, 1171 to 1443) at the 100-µg level in young adults, with serologic responses in at least 99.0% of the participants in both age groups, findings that met the prespecified noninferiority success criterion. Estimated vaccine efficacy was 88.0% (95% CI, 70.0 to 95.8) against Covid-19 occurring 14 days or more after the first injection, at a time when B.1.617.2 (delta) was the dominant circulating variant. CONCLUSIONS: Two 50-µg doses of the mRNA-1273 vaccine were found to be safe and effective in inducing immune responses and preventing Covid-19 in children 6 to 11 years of age; these responses were noninferior to those in young adults. (Funded by the Biomedical Advanced Research and Development Authority and the National Institute of Allergy and Infectious Diseases; KidCOVE ClinicalTrials.gov number, NCT04796896.).


Asunto(s)
Vacuna nCoV-2019 mRNA-1273 , COVID-19 , Vacuna nCoV-2019 mRNA-1273/efectos adversos , Vacuna nCoV-2019 mRNA-1273/inmunología , Vacuna nCoV-2019 mRNA-1273/uso terapéutico , Adolescente , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/sangre , COVID-19/complicaciones , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/uso terapéutico , Niño , Método Doble Ciego , Humanos , SARS-CoV-2 , Síndrome de Respuesta Inflamatoria Sistémica , Eficacia de las Vacunas , Adulto Joven
13.
N Engl J Med ; 387(1): 21-34, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35704396

RESUMEN

BACKGROUND: The protection conferred by natural immunity, vaccination, and both against symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection with the BA.1 or BA.2 sublineages of the omicron (B.1.1.529) variant is unclear. METHODS: We conducted a national, matched, test-negative, case-control study in Qatar from December 23, 2021, through February 21, 2022, to evaluate the effectiveness of vaccination with BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna), natural immunity due to previous infection with variants other than omicron, and hybrid immunity (previous infection and vaccination) against symptomatic omicron infection and against severe, critical, or fatal coronavirus disease 2019 (Covid-19). RESULTS: The effectiveness of previous infection alone against symptomatic BA.2 infection was 46.1% (95% confidence interval [CI], 39.5 to 51.9). The effectiveness of vaccination with two doses of BNT162b2 and no previous infection was negligible (-1.1%; 95% CI, -7.1 to 4.6), but nearly all persons had received their second dose more than 6 months earlier. The effectiveness of three doses of BNT162b2 and no previous infection was 52.2% (95% CI, 48.1 to 55.9). The effectiveness of previous infection and two doses of BNT162b2 was 55.1% (95% CI, 50.9 to 58.9), and the effectiveness of previous infection and three doses of BNT162b2 was 77.3% (95% CI, 72.4 to 81.4). Previous infection alone, BNT162b2 vaccination alone, and hybrid immunity all showed strong effectiveness (>70%) against severe, critical, or fatal Covid-19 due to BA.2 infection. Similar results were observed in analyses of effectiveness against BA.1 infection and of vaccination with mRNA-1273. CONCLUSIONS: No discernable differences in protection against symptomatic BA.1 and BA.2 infection were seen with previous infection, vaccination, and hybrid immunity. Vaccination enhanced protection among persons who had had a previous infection. Hybrid immunity resulting from previous infection and recent booster vaccination conferred the strongest protection. (Funded by Weill Cornell Medicine-Qatar and others.).


Asunto(s)
Vacuna nCoV-2019 mRNA-1273 , Vacuna BNT162 , COVID-19 , Inmunidad Innata , Inmunización , SARS-CoV-2 , Vacuna nCoV-2019 mRNA-1273/inmunología , Vacuna nCoV-2019 mRNA-1273/uso terapéutico , Vacuna BNT162/inmunología , Vacuna BNT162/uso terapéutico , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Estudios de Casos y Controles , Humanos , Inmunidad Innata/inmunología , Inmunización Secundaria , Recurrencia , SARS-CoV-2/inmunología , Vacunación
14.
N Engl J Med ; 387(18): 1673-1687, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36260859

RESUMEN

BACKGROUND: The safety, reactogenicity, immunogenicity, and efficacy of the mRNA-1273 coronavirus disease 2019 (Covid-19) vaccine in young children are unknown. METHODS: Part 1 of this ongoing phase 2-3 trial was open label for dose selection; part 2 was an observer-blinded, placebo-controlled evaluation of the selected dose. In part 2, we randomly assigned young children (6 months to 5 years of age) in a 3:1 ratio to receive two 25-µg injections of mRNA-1273 or placebo, administered 28 days apart. The primary objectives were to evaluate the safety and reactogenicity of the vaccine and to determine whether the immune response in these children was noninferior to that in young adults (18 to 25 years of age) in a related phase 3 trial. Secondary objectives were to determine the incidences of Covid-19 and severe acute respiratory syndrome coronavirus 2 infection after administration of mRNA-1273 or placebo. RESULTS: On the basis of safety and immunogenicity results in part 1 of the trial, the 25-µg dose was evaluated in part 2. In part 2, 3040 children 2 to 5 years of age and 1762 children 6 to 23 months of age were randomly assigned to receive two 25-µg injections of mRNA-1273; 1008 children 2 to 5 years of age and 593 children 6 to 23 months of age were randomly assigned to receive placebo. The median duration of follow-up after the second injection was 71 days in the 2-to-5-year-old cohort and 68 days in the 6-to-23-month-old cohort. Adverse events were mainly low-grade and transient, and no new safety concerns were identified. At day 57, neutralizing antibody geometric mean concentrations were 1410 (95% confidence interval [CI], 1272 to 1563) among 2-to-5-year-olds and 1781 (95% CI, 1616 to 1962) among 6-to-23-month-olds, as compared with 1391 (95% CI, 1263 to 1531) among young adults, who had received 100-µg injections of mRNA-1273, findings that met the noninferiority criteria for immune responses for both age cohorts. The estimated vaccine efficacy against Covid-19 was 36.8% (95% CI, 12.5 to 54.0) among 2-to-5-year-olds and 50.6% (95% CI, 21.4 to 68.6) among 6-to-23-month-olds, at a time when B.1.1.529 (omicron) was the predominant circulating variant. CONCLUSIONS: Two 25-µg doses of the mRNA-1273 vaccine were found to be safe in children 6 months to 5 years of age and elicited immune responses that were noninferior to those in young adults. (Funded by the Biomedical Advanced Research and Development Authority and National Institute of Allergy and Infectious Diseases; KidCOVE ClinicalTrials.gov number, NCT04796896.).


Asunto(s)
Vacuna nCoV-2019 mRNA-1273 , COVID-19 , Inmunogenicidad Vacunal , Niño , Preescolar , Humanos , Lactante , Adulto Joven , Vacuna nCoV-2019 mRNA-1273/inmunología , Vacuna nCoV-2019 mRNA-1273/uso terapéutico , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/epidemiología , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Método Doble Ciego , Inmunogenicidad Vacunal/inmunología , Eficacia de las Vacunas , Resultado del Tratamiento , Adolescente , Adulto
15.
N Engl J Med ; 386(10): 951-963, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35045226

RESUMEN

BACKGROUND: The Ad26.COV2.S vaccine, which was approved as a single-shot immunization regimen, has been shown to be effective against severe coronavirus disease 2019. However, this vaccine induces lower severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S)-specific antibody levels than those induced by messenger RNA (mRNA)-based vaccines. The immunogenicity and reactogenicity of a homologous or heterologous booster in persons who have received an Ad26.COV2.S priming dose are unclear. METHODS: In this single-blind, multicenter, randomized, controlled trial involving health care workers who had received a priming dose of Ad26.COV2.S vaccine, we assessed immunogenicity and reactogenicity 28 days after a homologous or heterologous booster vaccination. The participants were assigned to receive no booster, an Ad26.COV2.S booster, an mRNA-1273 booster, or a BNT162b2 booster. The primary end point was the level of S-specific binding antibodies, and the secondary end points were the levels of neutralizing antibodies, S-specific T-cell responses, and reactogenicity. A post hoc analysis was performed to compare mRNA-1273 boosting with BNT162b2 boosting. RESULTS: Homologous or heterologous booster vaccination resulted in higher levels of S-specific binding antibodies, neutralizing antibodies, and T-cell responses than a single Ad26.COV2.S vaccination. The increase in binding antibodies was significantly larger with heterologous regimens that included mRNA-based vaccines than with the homologous booster. The mRNA-1273 booster was most immunogenic and was associated with higher reactogenicity than the BNT162b2 and Ad26.COV2.S boosters. Local and systemic reactions were generally mild to moderate in the first 2 days after booster administration. CONCLUSIONS: The Ad26.COV2.S and mRNA boosters had an acceptable safety profile and were immunogenic in health care workers who had received a priming dose of Ad26.COV2.S vaccine. The strongest responses occurred after boosting with mRNA-based vaccines. Boosting with any available vaccine was better than not boosting. (Funded by the Netherlands Organization for Health Research and Development ZonMw; SWITCH ClinicalTrials.gov number, NCT04927936.).


Asunto(s)
Ad26COVS1/inmunología , Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/inmunología , Inmunización Secundaria , Inmunogenicidad Vacunal , Inmunoglobulina G/sangre , Vacuna nCoV-2019 mRNA-1273/inmunología , Adulto , Anticuerpos Neutralizantes/sangre , Vacuna BNT162/inmunología , Femenino , Humanos , Interferón gamma/sangre , Masculino , Persona de Mediana Edad , SARS-CoV-2 , Método Simple Ciego , Linfocitos T/inmunología
16.
N Engl J Med ; 387(14): 1279-1291, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36112399

RESUMEN

BACKGROUND: The safety and immunogenicity of the bivalent omicron-containing mRNA-1273.214 booster vaccine are not known. METHODS: In this ongoing, phase 2-3 study, we compared the 50-µg bivalent vaccine mRNA-1273.214 (25 µg each of ancestral Wuhan-Hu-1 and omicron B.1.1.529 [BA.1] spike messenger RNAs) with the previously authorized 50-µg mRNA-1273 booster. We administered mRNA-1273.214 or mRNA-1273 as a second booster in adults who had previously received a two-dose (100-µg) primary series and first booster (50-µg) dose of mRNA-1273 (≥3 months earlier). The primary objectives were to assess the safety, reactogenicity, and immunogenicity of mRNA-1273.214 at 28 days after the booster dose. RESULTS: Interim results are presented. Sequential groups of participants received 50 µg of mRNA-1273.214 (437 participants) or mRNA-1273 (377 participants) as a second booster dose. The median time between the first and second boosters was similar for mRNA-1273.214 (136 days) and mRNA-1273 (134 days). In participants with no previous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the geometric mean titers of neutralizing antibodies against the omicron BA.1 variant were 2372.4 (95% confidence interval [CI], 2070.6 to 2718.2) after receipt of the mRNA-1273.214 booster and 1473.5 (95% CI, 1270.8 to 1708.4) after receipt of the mRNA-1273 booster. In addition, 50-µg mRNA-1273.214 and 50-µg mRNA-1273 elicited geometric mean titers of 727.4 (95% CI, 632.8 to 836.1) and 492.1 (95% CI, 431.1 to 561.9), respectively, against omicron BA.4 and BA.5 (BA.4/5), and the mRNA-1273.214 booster also elicited higher binding antibody responses against multiple other variants (alpha, beta, gamma, and delta) than the mRNA-1273 booster. Safety and reactogenicity were similar with the two booster vaccines. Vaccine effectiveness was not assessed in this study; in an exploratory analysis, SARS-CoV-2 infection occurred in 11 participants after the mRNA-1273.214 booster and in 9 participants after the mRNA-1273 booster. CONCLUSIONS: The bivalent omicron-containing vaccine mRNA-1273.214 elicited neutralizing antibody responses against omicron that were superior to those with mRNA-1273, without evident safety concerns. (Funded by Moderna; ClinicalTrials.gov number, NCT04927065.).


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Inmunización Secundaria , Vacunas Combinadas , Vacunas de ARNm , Vacuna nCoV-2019 mRNA-1273/inmunología , Vacuna nCoV-2019 mRNA-1273/uso terapéutico , Adulto , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/uso terapéutico , Humanos , Inmunogenicidad Vacunal/inmunología , SARS-CoV-2 , Vacunas Combinadas/inmunología , Vacunas Combinadas/uso terapéutico , Vacunas de ARNm/inmunología , Vacunas de ARNm/uso terapéutico
17.
N Engl J Med ; 386(11): 1046-1057, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35081293

RESUMEN

BACKGROUND: Although the three vaccines against coronavirus disease 2019 (Covid-19) that have received emergency use authorization in the United States are highly effective, breakthrough infections are occurring. Data are needed on the serial use of homologous boosters (same as the primary vaccine) and heterologous boosters (different from the primary vaccine) in fully vaccinated recipients. METHODS: In this phase 1-2, open-label clinical trial conducted at 10 sites in the United States, adults who had completed a Covid-19 vaccine regimen at least 12 weeks earlier and had no reported history of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection received a booster injection with one of three vaccines: mRNA-1273 (Moderna) at a dose of 100 µg, Ad26.COV2.S (Johnson & Johnson-Janssen) at a dose of 5×1010 virus particles, or BNT162b2 (Pfizer-BioNTech) at a dose of 30 µg. The primary end points were safety, reactogenicity, and humoral immunogenicity on trial days 15 and 29. RESULTS: Of the 458 participants who were enrolled in the trial, 154 received mRNA-1273, 150 received Ad26.COV2.S, and 153 received BNT162b2 as booster vaccines; 1 participant did not receive the assigned vaccine. Reactogenicity was similar to that reported for the primary series. More than half the recipients reported having injection-site pain, malaise, headache, or myalgia. For all combinations, antibody neutralizing titers against a SARS-CoV-2 D614G pseudovirus increased by a factor of 4 to 73, and binding titers increased by a factor of 5 to 55. Homologous boosters increased neutralizing antibody titers by a factor of 4 to 20, whereas heterologous boosters increased titers by a factor of 6 to 73. Spike-specific T-cell responses increased in all but the homologous Ad26.COV2.S-boosted subgroup. CD8+ T-cell levels were more durable in the Ad26.COV2.S-primed recipients, and heterologous boosting with the Ad26.COV2.S vaccine substantially increased spike-specific CD8+ T cells in the mRNA vaccine recipients. CONCLUSIONS: Homologous and heterologous booster vaccines had an acceptable safety profile and were immunogenic in adults who had completed a primary Covid-19 vaccine regimen at least 12 weeks earlier. (Funded by the National Institute of Allergy and Infectious Diseases; DMID 21-0012 ClinicalTrials.gov number, NCT04889209.).


Asunto(s)
Vacuna nCoV-2019 mRNA-1273/inmunología , Ad26COVS1/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacuna BNT162/inmunología , Vacunas contra la COVID-19/inmunología , Inmunogenicidad Vacunal , Adulto , Anciano , Anciano de 80 o más Años , Vacunas contra la COVID-19/efectos adversos , Femenino , Humanos , Inmunización Secundaria/efectos adversos , Inyecciones Intramusculares/efectos adversos , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T/inmunología
18.
N Engl J Med ; 386(10): 933-941, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35020982

RESUMEN

BACKGROUND: The duration of protection afforded by coronavirus disease 2019 (Covid-19) vaccines in the United States is unclear. Whether the increase in postvaccination infections during the summer of 2021 was caused by declining immunity over time, the emergence of the B.1.617.2 (delta) variant, or both is unknown. METHODS: We extracted data regarding Covid-19-related vaccination and outcomes during a 9-month period (December 11, 2020, to September 8, 2021) for approximately 10.6 million North Carolina residents by linking data from the North Carolina Covid-19 Surveillance System and the Covid-19 Vaccine Management System. We used a Cox regression model to estimate the effectiveness of the BNT162b2 (Pfizer-BioNTech), mRNA-1273 (Moderna), and Ad26.COV2.S (Johnson & Johnson-Janssen) vaccines in reducing the current risks of Covid-19, hospitalization, and death, as a function of time elapsed since vaccination. RESULTS: For the two-dose regimens of messenger RNA (mRNA) vaccines BNT162b2 (30 µg per dose) and mRNA-1273 (100 µg per dose), vaccine effectiveness against Covid-19 was 94.5% (95% confidence interval [CI], 94.1 to 94.9) and 95.9% (95% CI, 95.5 to 96.2), respectively, at 2 months after the first dose and decreased to 66.6% (95% CI, 65.2 to 67.8) and 80.3% (95% CI, 79.3 to 81.2), respectively, at 7 months. Among early recipients of BNT162b2 and mRNA-1273, effectiveness decreased by approximately 15 and 10 percentage points, respectively, from mid-June to mid-July, when the delta variant became dominant. For the one-dose regimen of Ad26.COV2.S (5 × 1010 viral particles), effectiveness against Covid-19 was 74.8% (95% CI, 72.5 to 76.9) at 1 month and decreased to 59.4% (95% CI, 57.2 to 61.5) at 5 months. All three vaccines maintained better effectiveness in preventing hospitalization and death than in preventing infection over time, although the two mRNA vaccines provided higher levels of protection than Ad26.COV2.S. CONCLUSIONS: All three Covid-19 vaccines had durable effectiveness in reducing the risks of hospitalization and death. Waning protection against infection over time was due to both declining immunity and the emergence of the delta variant. (Funded by a Dennis Gillings Distinguished Professorship and the National Institutes of Health.).


Asunto(s)
Vacuna nCoV-2019 mRNA-1273 , Ad26COVS1 , Vacuna BNT162 , COVID-19/prevención & control , Eficacia de las Vacunas/estadística & datos numéricos , Adolescente , Adulto , Anciano , COVID-19/inmunología , COVID-19/mortalidad , Niño , Femenino , Hospitalización/estadística & datos numéricos , Humanos , Inmunogenicidad Vacunal , Masculino , Persona de Mediana Edad , North Carolina/epidemiología , SARS-CoV-2 , Adulto Joven
19.
N Engl J Med ; 386(16): 1532-1546, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35249272

RESUMEN

BACKGROUND: A rapid increase in coronavirus disease 2019 (Covid-19) cases due to the omicron (B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 in highly vaccinated populations has aroused concerns about the effectiveness of current vaccines. METHODS: We used a test-negative case-control design to estimate vaccine effectiveness against symptomatic disease caused by the omicron and delta (B.1.617.2) variants in England. Vaccine effectiveness was calculated after primary immunization with two doses of BNT162b2 (Pfizer-BioNTech), ChAdOx1 nCoV-19 (AstraZeneca), or mRNA-1273 (Moderna) vaccine and after a booster dose of BNT162b2, ChAdOx1 nCoV-19, or mRNA-1273. RESULTS: Between November 27, 2021, and January 12, 2022, a total of 886,774 eligible persons infected with the omicron variant, 204,154 eligible persons infected with the delta variant, and 1,572,621 eligible test-negative controls were identified. At all time points investigated and for all combinations of primary course and booster vaccines, vaccine effectiveness against symptomatic disease was higher for the delta variant than for the omicron variant. No effect against the omicron variant was noted from 20 weeks after two ChAdOx1 nCoV-19 doses, whereas vaccine effectiveness after two BNT162b2 doses was 65.5% (95% confidence interval [CI], 63.9 to 67.0) at 2 to 4 weeks, dropping to 8.8% (95% CI, 7.0 to 10.5) at 25 or more weeks. Among ChAdOx1 nCoV-19 primary course recipients, vaccine effectiveness increased to 62.4% (95% CI, 61.8 to 63.0) at 2 to 4 weeks after a BNT162b2 booster before decreasing to 39.6% (95% CI, 38.0 to 41.1) at 10 or more weeks. Among BNT162b2 primary course recipients, vaccine effectiveness increased to 67.2% (95% CI, 66.5 to 67.8) at 2 to 4 weeks after a BNT162b2 booster before declining to 45.7% (95% CI, 44.7 to 46.7) at 10 or more weeks. Vaccine effectiveness after a ChAdOx1 nCoV-19 primary course increased to 70.1% (95% CI, 69.5 to 70.7) at 2 to 4 weeks after an mRNA-1273 booster and decreased to 60.9% (95% CI, 59.7 to 62.1) at 5 to 9 weeks. After a BNT162b2 primary course, the mRNA-1273 booster increased vaccine effectiveness to 73.9% (95% CI, 73.1 to 74.6) at 2 to 4 weeks; vaccine effectiveness fell to 64.4% (95% CI, 62.6 to 66.1) at 5 to 9 weeks. CONCLUSIONS: Primary immunization with two doses of ChAdOx1 nCoV-19 or BNT162b2 vaccine provided limited protection against symptomatic disease caused by the omicron variant. A BNT162b2 or mRNA-1273 booster after either the ChAdOx1 nCoV-19 or BNT162b2 primary course substantially increased protection, but that protection waned over time. (Funded by the U.K. Health Security Agency.).


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Eficacia de las Vacunas , Vacuna nCoV-2019 mRNA-1273/uso terapéutico , Vacuna BNT162/uso terapéutico , COVID-19/prevención & control , Vacunas contra la COVID-19/uso terapéutico , Estudios de Casos y Controles , ChAdOx1 nCoV-19/uso terapéutico , Humanos , Inmunización Secundaria/efectos adversos , SARS-CoV-2/genética
20.
N Engl J Med ; 386(2): 105-115, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-34942066

RESUMEN

BACKGROUND: The messenger RNA (mRNA)-based vaccines BNT162b2 and mRNA-1273 are more than 90% effective against coronavirus disease 2019 (Covid-19). However, their comparative effectiveness for a range of outcomes across diverse populations is unknown. METHODS: We emulated a target trial using the electronic health records of U.S. veterans who received a first dose of the BNT162b2 or mRNA-1273 vaccine between January 4 and May 14, 2021, during a period marked by predominance of the SARS-CoV-2 B.1.1.7 (alpha) variant. We matched recipients of each vaccine in a 1:1 ratio according to their risk factors. Outcomes included documented severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, symptomatic Covid-19, hospitalization for Covid-19, admission to an intensive care unit (ICU) for Covid-19, and death from Covid-19. We estimated risks using the Kaplan-Meier estimator. To assess the influence of the B.1.617.2 (delta) variant, we emulated a second target trial that involved veterans vaccinated between July 1 and September 20, 2021. RESULTS: Each vaccine group included 219,842 persons. Over 24 weeks of follow-up in a period marked by alpha-variant predominance, the estimated risk of documented infection was 5.75 events per 1000 persons (95% confidence interval [CI], 5.39 to 6.23) in the BNT162b2 group and 4.52 events per 1000 persons (95% CI, 4.17 to 4.84) in the mRNA-1273 group. The excess number of events per 1000 persons for BNT162b2 as compared with mRNA-1273 was 1.23 (95% CI, 0.72 to 1.81) for documented infection, 0.44 (95% CI, 0.25 to 0.70) for symptomatic Covid-19, 0.55 (95% CI, 0.36 to 0.83) for hospitalization for Covid-19, 0.10 (95% CI, 0.00 to 0.26) for ICU admission for Covid-19, and 0.02 (95% CI, -0.06 to 0.12) for death from Covid-19. The corresponding excess risk (BNT162b2 vs. mRNA-1273) of documented infection over 12 weeks of follow-up in a period marked by delta-variant predominance was 6.54 events per 1000 persons (95% CI, -2.58 to 11.82). CONCLUSIONS: The 24-week risk of Covid-19 outcomes was low after vaccination with mRNA-1273 or BNT162b2, although risks were lower with mRNA-1273 than with BNT162b2. This pattern was consistent across periods marked by alpha- and delta-variant predominance. (Funded by the Department of Veterans Affairs and others.).


Asunto(s)
Vacuna nCoV-2019 mRNA-1273 , Vacuna BNT162 , COVID-19/prevención & control , Eficacia de las Vacunas/estadística & datos numéricos , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/epidemiología , COVID-19/mortalidad , Femenino , Hospitalización/estadística & datos numéricos , Humanos , Incidencia , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Estados Unidos/epidemiología , Veteranos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA