RESUMEN
Synaptic vesicles are organelles with a precisely defined protein and lipid composition1,2, yet the molecular mechanisms for the biogenesis of synaptic vesicles are mainly unknown. Here we discovered a well-defined interface between the synaptic vesicle V-ATPase and synaptophysin by in situ cryo-electron tomography and single-particle cryo-electron microscopy of functional synaptic vesicles isolated from mouse brains3. The synaptic vesicle V-ATPase is an ATP-dependent proton pump that establishes the proton gradient across the synaptic vesicle, which in turn drives the uptake of neurotransmitters4,5. Synaptophysin6 and its paralogues synaptoporin7 and synaptogyrin8 belong to a family of abundant synaptic vesicle proteins whose function is still unclear. We performed structural and functional studies of synaptophysin-knockout mice, confirming the identity of synaptophysin as an interaction partner with the V-ATPase. Although there is little change in the conformation of the V-ATPase upon interaction with synaptophysin, the presence of synaptophysin in synaptic vesicles profoundly affects the copy number of V-ATPases. This effect on the topography of synaptic vesicles suggests that synaptophysin assists in their biogenesis. In support of this model, we observed that synaptophysin-knockout mice exhibit severe seizure susceptibility, suggesting an imbalance of neurotransmitter release as a physiological consequence of the absence of synaptophysin.
Asunto(s)
Sinaptofisina , ATPasas de Translocación de Protón Vacuolares , Animales , Masculino , Ratones , Microscopía por Crioelectrón , Ratones Noqueados , Modelos Moleculares , Neurotransmisores/metabolismo , Unión Proteica , Convulsiones/genética , Convulsiones/metabolismo , Vesículas Sinápticas/química , Vesículas Sinápticas/enzimología , Vesículas Sinápticas/ultraestructura , Sinaptofisina/química , Sinaptofisina/deficiencia , Sinaptofisina/metabolismo , Sinaptofisina/ultraestructura , ATPasas de Translocación de Protón Vacuolares/análisis , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/ultraestructura , Tomografía con Microscopio ElectrónicoRESUMEN
Recent evidence suggests that the Ca(2+)-sensors synaptotagmin-1 and Doc2b deform synaptic membranes during synaptic vesicle exocytosis. We discuss how local curvature generated by these and other proteins may stimulate membrane fusion and discuss the potential implications of these findings for other cellular fusion events.
Asunto(s)
Membrana Celular/metabolismo , Membranas Intracelulares/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Membrana Celular/química , Humanos , Membranas Intracelulares/química , Proteínas de la Membrana/metabolismo , Células Vegetales , Proteínas SNARE/metabolismo , Sinapsis/metabolismo , Vesículas Sinápticas/químicaRESUMEN
Synaptic vesicle (SV) exo- and endocytosis are tightly coupled to sustain neurotransmission in presynaptic terminals, and both are regulated by Ca(2+). Ca(2+) influx triggered by voltage-gated Ca(2+) channels is necessary for SV fusion. However, extracellular Ca(2+) has also been shown to be required for endocytosis. The intracellular Ca(2+) levels (<1 microM) that trigger endocytosis are typically much lower than those (>10 microM) needed to induce exocytosis, and endocytosis is inhibited when the Ca(2+) level exceeds 1 microM. Here, we identify and characterize a transmembrane protein associated with SVs that, upon SV fusion, localizes at periactive zones. Loss of Flower results in impaired intracellular resting Ca(2+) levels and impaired endocytosis. Flower multimerizes and is able to form a channel to control Ca(2+) influx. We propose that Flower functions as a Ca(2+) channel to regulate synaptic endocytosis and hence couples exo- with endocytosis.
Asunto(s)
Canales de Calcio/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Endocitosis , Exocitosis , Vesículas Sinápticas/metabolismo , Animales , Canales de Calcio/análisis , Proteínas de Drosophila/análisis , Drosophila melanogaster/citología , Isoformas de Proteínas/análisis , Isoformas de Proteínas/metabolismo , Vesículas Sinápticas/químicaRESUMEN
Neurotransmitter release is governed by eight central proteins among other factors: the neuronal SNAREs syntaxin-1, synaptobrevin, and SNAP-25, which form a tight SNARE complex that brings the synaptic vesicle and plasma membranes together; NSF and SNAPs, which disassemble SNARE complexes; Munc18-1 and Munc13-1, which organize SNARE complex assembly; and the Ca2+ sensor synaptotagmin-1. Reconstitution experiments revealed that Munc18-1, Munc13-1, NSF, and α-SNAP can mediate Ca2+-dependent liposome fusion between synaptobrevin liposomes and syntaxin-1-SNAP-25 liposomes, but high fusion efficiency due to uncontrolled SNARE complex assembly did not allow investigation of the role of synaptotagmin-1 on fusion. Here, we show that decreasing the synaptobrevin-to-lipid ratio in the corresponding liposomes to very low levels leads to inefficient fusion and that synaptotagmin-1 strongly stimulates fusion under these conditions. Such stimulation depends on Ca2+ binding to the two C2 domains of synaptotagmin-1. We also show that anchoring SNAP-25 on the syntaxin-1 liposomes dramatically enhances fusion. Moreover, we uncover a synergy between synaptotagmin-1 and membrane anchoring of SNAP-25, which allows efficient Ca2+-dependent fusion between liposomes bearing very low synaptobrevin densities and liposomes containing very low syntaxin-1 densities. Thus, liposome fusion in our assays is achieved with a few SNARE complexes in a manner that requires Munc18-1 and Munc13-1 and that depends on Ca2+ binding to synaptotagmin-1, all of which are fundamental features of neurotransmitter release in neurons.
Asunto(s)
Proteínas Munc18/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Vesículas Sinápticas/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Sinaptotagmina I/metabolismo , Animales , Calcio/metabolismo , Regulación de la Expresión Génica , Liposomas/química , Liposomas/metabolismo , Fusión de Membrana , Proteínas Munc18/genética , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neurotransmisores/genética , Neurotransmisores/metabolismo , Fosfolípidos/química , Fosfolípidos/metabolismo , Ratas , Transmisión Sináptica , Vesículas Sinápticas/química , Proteína 25 Asociada a Sinaptosomas/genética , Sinaptotagmina I/genética , Sintaxina 1/genética , Sintaxina 1/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismoRESUMEN
The microtubule-associated protein tau participates in neurotransmission regulation via its interaction with synaptic vesicles (SVs). The precise nature and mechanics of tau's engagement with SVs, especially regarding alterations in vesicle dynamics, remain a matter of discussion. We report an electrochemical method using a synapse-mimicking nanopipette to monitor vesicle dynamics induced by tau. A model vesicle of ~30â nm is confined within a lipid-modified nanopipette orifice with a comparable diameter to mimic the synaptic lipid environment. Both tau and phosphorylated tau (p-tau) present two-state dynamic behavior in this biomimetic system, showing typical ionic current oscillation, induced by lipid-tau interaction. The results indicate that p-tau has a stronger affinity to the lipid vesicles in the confined environment, blocking the vesicle movement to a higher degree. Taken together, this method bridges a gap for sensing synaptic vesicle dynamics in a confined lipid environment, mimicking vesicle movement near the synaptic membrane. These findings contribute to understanding how different types of tau protein regulate synaptic vesicle motility and to underlying its functional and pathological behaviours in disease.
Asunto(s)
Técnicas Electroquímicas , Vesículas Sinápticas , Proteínas tau , Proteínas tau/metabolismo , Proteínas tau/química , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/química , Humanos , FosforilaciónRESUMEN
Clathrin light chain (CLC) subunits in vertebrates are encoded by paralogous genes CLTA and CLTB, and both gene products are alternatively spliced in neurons. To understand how this CLC diversity influences neuronal clathrin function, we characterized the biophysical properties of clathrin comprising individual CLC variants for correlation with neuronal phenotypes of mice lacking either CLC-encoding gene. CLC splice variants differentially influenced clathrin knee conformation within assemblies, and clathrin with neuronal CLC mixtures was more effective in membrane deformation than clathrin with single neuronal isoforms nCLCa or nCLCb. Correspondingly, electrophysiological recordings revealed that neurons from mice lacking nCLCa or nCLCb were both defective in synaptic vesicle replenishment. Mice with only nCLCb had a reduced synaptic vesicle pool and impaired neurotransmission compared to WT mice, while nCLCa-only mice had increased synaptic vesicle numbers, restoring normal neurotransmission. These findings highlight differences between the CLC isoforms and show that isoform mixing influences tissue-specific clathrin activity in neurons, which requires their functional balance.
Asunto(s)
Cadenas Ligeras de Clatrina , Vesículas Sinápticas/química , Vesículas Sinápticas/metabolismo , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Células Cultivadas , Cadenas Ligeras de Clatrina/química , Cadenas Ligeras de Clatrina/genética , Cadenas Ligeras de Clatrina/metabolismo , Ratones , Ratones Noqueados , Neuronas/citología , Neuronas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismoRESUMEN
The size, polydispersity, and electron density profile of synaptic vesicles (SVs) can be studied by small-angle X-ray scattering (SAXS), i.e. by X-ray diffraction from purified SV suspensions in solution. Here we show that size and shape transformations, as they appear in the functional context of these important synaptic organelles, can also be monitored by SAXS. In particular, we have investigated the active uptake of neurotransmitters, and find a mean vesicle radius increase of about 12% after the uptake of glutamate, which indicates an unusually large extensibility of the vesicle surface, likely to be accompanied by conformational changes of membrane proteins and rearrangements of the bilayer. Changes in the electron density profile (EDP) give first indications for such a rearrangement. Details of the protein structure are screened, however, by SVs polydispersity. To overcome the limitations of large ensemble averages and heterogeneous structures, we therefore propose serial X-ray diffraction by single free electron laser pulses. Using simulated data for realistic parameters, we show that this is in principle feasible, and that even spatial distances between vesicle proteins could be assessed by this approach.
Asunto(s)
Ácido Glutámico , Vesículas Sinápticas , Transporte Biológico , Proteínas/metabolismo , Dispersión del Ángulo Pequeño , Vesículas Sinápticas/química , Vesículas Sinápticas/metabolismo , Difracción de Rayos XRESUMEN
The mismatch in the spatial resolution of Arterial Spin Labeling (ASL) MRI perfusion images and the anatomy of functionally distinct tissues in the brain leads to a partial volume effect (PVE), which in turn confounds the estimation of perfusion into a specific tissue of interest such as gray or white matter. This confound occurs because the image voxels contain a mixture of tissues with disparate perfusion properties, leading to estimated perfusion values that reflect primarily the volume proportions of tissues in the voxel rather than the perfusion of any particular tissue of interest within that volume. It is already recognized that PVE influences studies of brain perfusion, and that its effect might be even more evident in studies where changes in perfusion are co-incident with alterations in brain structure, such as studies involving a comparison between an atrophic patient population vs control subjects, or studies comparing subjects over a wide range of ages. However, the application of PVE correction (PVEc) is currently limited and the employed methodologies remain inconsistent. In this article, we outline the influence of PVE in ASL measurements of perfusion, explain the main principles of PVEc, and provide a critique of the current state of the art for the use of such methods. Furthermore, we examine the current use of PVEc in perfusion studies and whether there is evidence to support its wider adoption. We conclude that there is sound theoretical motivation for the use of PVEc alongside conventional, 'uncorrected', images, and encourage such combined reporting. Methods for PVEc are now available within standard neuroimaging toolboxes, which makes our recommendation straightforward to implement. However, there is still more work to be done to establish the value of PVEc as well as the efficacy and robustness of existing PVEc methods.
Asunto(s)
Algoritmos , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/análisis , Compuestos de Anilina , Encéfalo/patología , Encéfalo/fisiopatología , Radioisótopos de Carbono , Arterias Cerebrales , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Corteza Entorrinal/diagnóstico por imagen , Corteza Entorrinal/patología , Corteza Entorrinal/fisiopatología , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Hipocampo/fisiopatología , Procesamiento de Imagen Asistido por Computador/métodos , Glicoproteínas de Membrana/análisis , Proteínas del Tejido Nervioso/análisis , Tamaño de los Órganos , Perfusión , Tomografía de Emisión de Positrones , Piridinas , Pirrolidinonas , Radiofármacos , Marcadores de Spin , Vesículas Sinápticas/química , TiazolesRESUMEN
Chemical neurotransmission is the major mechanism of neuronal communication. Neurotransmitters are released from secretory organelles, the synaptic vesicles (SVs) via exocytosis into the synaptic cleft. Fusion of SVs with the presynaptic plasma membrane is balanced by endocytosis, thus maintaining the presynaptic membrane at steady-state levels. The protein machineries responsible for exo- and endocytosis have been extensively investigated. In contrast, less is known about the role of lipids in synaptic transmission and how the lipid composition of SVs is affected by dynamic exo-endocytotic cycling. Here we summarize the current knowledge about the composition, organization, and function of SV membrane lipids. We also cover lipid biogenesis and maintenance during the synaptic vesicle cycle.
Asunto(s)
Membranas Sinápticas/química , Vesículas Sinápticas/química , Animales , Endocitosis/fisiología , Exocitosis/fisiología , Humanos , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/metabolismoRESUMEN
Complexin-1 (Cpx) and α-synuclein (α-Syn) are involved in neurotransmitter release through an interaction with synaptic vesicles (SVs). Recent studies demonstrated that Cpx and α-Syn preferentially associate with highly curved membranes, like SVs, to correctly position them for fusion. Here, based on recent experimental results, to further propose a possible explanation for this mechanism, we performed in silico simulations probing interactions between Cpx or α-Syn and membranes of varying curvature. We found that the preferential association is attributed to smaller, curved membranes containing more packing defects that expose hydrophobic acyl tails, which may favorably interact with hydrophobic residues of Cpx and α-Syn. The number of membrane defects is proportional to the curvature and the size can be regulated by cholesterol.
Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Membrana Dobles de Lípidos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Vesículas Sinápticas/metabolismo , alfa-Sinucleína/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/química , Colesterol/química , Enlace de Hidrógeno , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Proteínas del Tejido Nervioso/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfatidilserinas/química , Unión Proteica , Vesículas Sinápticas/química , alfa-Sinucleína/químicaRESUMEN
Synaptotagmin-1 and neuronal SNARE proteins have central roles in evoked synchronous neurotransmitter release; however, it is unknown how they cooperate to trigger synaptic vesicle fusion. Here we report atomic-resolution crystal structures of Ca(2+)- and Mg(2+)-bound complexes between synaptotagmin-1 and the neuronal SNARE complex, one of which was determined with diffraction data from an X-ray free-electron laser, leading to an atomic-resolution structure with accurate rotamer assignments for many side chains. The structures reveal several interfaces, including a large, specific, Ca(2+)-independent and conserved interface. Tests of this interface by mutagenesis suggest that it is essential for Ca(2+)-triggered neurotransmitter release in mouse hippocampal neuronal synapses and for Ca(2+)-triggered vesicle fusion in a reconstituted system. We propose that this interface forms before Ca(2+) triggering, moves en bloc as Ca(2+) influx promotes the interactions between synaptotagmin-1 and the plasma membrane, and consequently remodels the membrane to promote fusion, possibly in conjunction with other interfaces.
Asunto(s)
Exocitosis , Neuronas/metabolismo , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Sinaptotagminas/química , Sinaptotagminas/metabolismo , Animales , Sitios de Unión/genética , Calcio/química , Calcio/metabolismo , Membrana Celular/metabolismo , Cristalografía por Rayos X , Electrones , Hipocampo/citología , Rayos Láser , Magnesio/química , Magnesio/metabolismo , Fusión de Membrana , Ratones , Modelos Biológicos , Modelos Moleculares , Mutación/genética , Neuronas/química , Neuronas/citología , Proteínas SNARE/genética , Transmisión Sináptica , Vesículas Sinápticas/química , Vesículas Sinápticas/metabolismo , Sinaptotagminas/genéticaRESUMEN
The vacuolar H+ -adenosine triphosphatases (vATPases) acidify multiple intracellular organelles, including synaptic vesicles (SVs) and secretory granules. Acidification of SVs represents a critical point during the SV cycle: without acidification, neurotransmitters cannot be loaded into SVs. Despite the obvious importance of the vesicle acidification process for neurotrasmission and the life of complex organisms, little is known about the regulation of vATPase at the neuronal synapse. In addition, the composition of the vATPase complex on the SVs is unclear. Here, we summarize the key features of vATPase found on SVs, and propose a model of how vATPase activity is regulated during the SV cycle. It is anticipated that the information from the SV lumen is communicated to SV surface in order to signal successful acidification and neurotransmitter loading: we postulate here that the regulators of the vATPase activity exist (e.g., Rabconnectin-3) that promote the recruitment of SV peripheral proteins and, consequently, SV fusion.
Asunto(s)
Vesículas Sinápticas/química , Vesículas Sinápticas/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Humanos , Neuronas/metabolismo , Sinapsis/fisiologíaRESUMEN
Parkinson's disease (PD) is the second most common neurodegenerative disease; it is characterized by the loss of dopaminergic neurons in the midbrain and the accumulation of neuronal inclusions, mainly consisting of α-synuclein (α-syn) fibrils in the affected regions. The prion-like property of the pathological forms of α-syn transmitted via neuronal circuits has been considered inherent in the nature of PD. Thus, one of the potential targets in terms of PD prevention is the suppression of α-syn conversion from the functional form to pathological forms. Recent studies suggested that α-syn interacts with synaptic vesicle membranes and modulate the synaptic functions. A series of studies suggest that transient interaction of α-syn as multimers with synaptic vesicle membranes composed of phospholipids and other lipids is required for its physiological function, while an α-syn-lipid interaction imbalance is believed to cause α-syn aggregation and the resultant pathological α-syn conversion. Altered lipid metabolisms have also been implicated in the modulation of PD pathogenesis. This review focuses on the current literature reporting the role of lipids, especially phospholipids, and lipid metabolism in α-syn dynamics and aggregation processes.
Asunto(s)
Metabolismo de los Lípidos , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animales , Humanos , Fosfolípidos/metabolismo , Vesículas Sinápticas/química , Vesículas Sinápticas/metabolismo , alfa-Sinucleína/químicaRESUMEN
Analytical tools for quantitative measurements of glutamate, the principal excitatory neurotransmitter in the brain, are lacking. Here, we introduce a new enzyme-based amperometric sensor technique for the counting of glutamate molecules stored inside single synaptic vesicles. In this method, an ultra-fast enzyme-based glutamate sensor is placed into a solution of isolated synaptic vesicles, which stochastically rupture at the sensor surface in a potential-dependent manner at a constant negative potential. The continuous amperometric signals are sampled at high speed (10 kHz) to record sub-millisecond spikes, which represent glutamate release from single vesicles that burst open. Glutamate quantification is achieved by a calibration curve that is based on measurements of glutamate release from vesicles pre-filled with various glutamate concentrations. Our measurements show that an isolated single synaptic vesicle encapsulates about 8000 glutamate molecules and is comparable to the measured exocytotic quantal glutamate release in amperometric glutamate sensing in the nucleus accumbens of mouse brain tissue. Hence, this new methodology introduces the means to quantify ultra-small amounts of glutamate and to study synaptic vesicle physiology, pathogenesis, and drug treatments for neuronal disorders where glutamate is involved.
Asunto(s)
Aminoácido Oxidorreductasas/química , Técnicas Electroquímicas/métodos , Ácido Glutámico/análisis , Neurotransmisores/análisis , Vesículas Sinápticas/química , Animales , Química Encefálica , Carbono/química , Técnicas Electroquímicas/instrumentación , Electrodos , Ácido Glutámico/química , Oro/química , Masculino , Nanopartículas del Metal/química , Ratones Endogámicos C57BL , Neurotransmisores/química , Ratas Sprague-Dawley , Liposomas Unilamelares/químicaRESUMEN
Neurotransmission is achieved by soluble NSF attachment protein receptor (SNARE)-driven fusion of readily releasable vesicles that are docked and primed at the presynaptic plasma membrane. After neurotransmission, the readily releasable pool of vesicles must be refilled in less than 100 ms for subsequent release. Here we show that the initial association of SNARE complexes, SNAREpins, is far too slow to support this rapid refilling owing to an inherently high activation energy barrier. Our data suggest that acceleration of this process, i.e., lowering of the barrier, is physiologically necessary and can be achieved by molecular factors. Furthermore, under zero force, a low second energy barrier transiently traps SNAREpins in a half-zippered state similar to the partial assembly that engages calcium-sensitive regulatory machinery. This result suggests that the barrier must be actively raised in vivo to generate a sufficient pause in the zippering process for the regulators to set in place. We show that the heights of the activation energy barriers can be selectively changed by molecular factors. Thus, it is possible to modify, both in vitro and in vivo, the lifespan of each metastable state. This controllability provides a simple model in which vesicle docking/priming, an intrinsically slow process, can be substantially accelerated. It also explains how the machinery that regulates vesicle fusion can be set in place while SNAREpins are trapped in a half-zippered state.
Asunto(s)
Complejos Multiproteicos/genética , Proteínas SNARE/genética , Transmisión Sináptica/genética , Proteína 2 de Membrana Asociada a Vesículas/genética , Animales , Fenómenos Biofísicos , Fusión de Membrana/genética , Ratones , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Ratas , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/metabolismo , Membranas Sinápticas/química , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/química , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/química , Proteína 2 de Membrana Asociada a Vesículas/metabolismoRESUMEN
Adenosine-to-inosine RNA editing is one of the most common types of RNA editing, a posttranscriptional modification made by special enzymes. We present a proteomic study on this phenomenon for Drosophila melanogaster. Three proteome data sets were used in the study: two taken from public repository and the third one obtained here. A customized protein sequence database was generated using results of genome-wide adenosine-to-inosine RNA studies and applied for identifying the edited proteins. The total number of 68 edited peptides belonging to 59 proteins was identified in all data sets. Eight of them being shared between the whole insect, head, and brain proteomes. Seven edited sites belonging to synaptic vesicle and membrane trafficking proteins were selected for validation by orthogonal analysis by Multiple Reaction Monitoring. Five editing events in cpx, Syx1A, Cadps, CG4587, and EndoA were validated in fruit fly brain tissue at the proteome level using isotopically labeled standards. Ratios of unedited-to-edited proteoforms varied from 35:1 ( Syx1A) to 1:2 ( EndoA). Lys-137 to Glu editing of endophilin A may have functional consequences for its interaction to membrane. The work demonstrates the feasibility to identify the RNA editing event at the proteome level using shotgun proteomics and customized edited protein database.
Asunto(s)
Adenosina/metabolismo , Drosophila melanogaster/genética , Inosina/metabolismo , Proteínas de Insectos/genética , Proteogenómica/métodos , Edición de ARN , Aciltransferasas/química , Aciltransferasas/genética , Aciltransferasas/metabolismo , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Encéfalo/metabolismo , Bases de Datos de Proteínas , Conjuntos de Datos como Asunto , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/metabolismo , Proteínas de Insectos/clasificación , Proteínas de Insectos/metabolismo , Modelos Moleculares , Anotación de Secuencia Molecular , Proteoma/genética , Proteoma/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Vesículas Sinápticas/química , Vesículas Sinápticas/metabolismoRESUMEN
The amyloid aggregation of the presynaptic protein α-synuclein (AS) is pathognomonic of Parkinson's disease and other neurodegenerative disorders. Physiologically, AS contributes to synaptic homeostasis by participating in vesicle maintenance, trafficking, and release. Its avidity for highly curved acidic membranes has been related to the distinct chemistry of the N-terminal amphipathic helix adopted upon binding to appropriated lipid interfaces. Pathologically, AS populate a myriad of toxic aggregates ranging from soluble oligomers to insoluble amyloid fibrils. Different gain-of-toxic function mechanisms are linked to prefibrillar oligomers which are considered as the most neurotoxic species. Here, we investigated if amyloid oligomerization could hamper AS function as a membrane curvature sensor. We used fluorescence correlation spectroscopy to quantitatively evaluate the interaction of oligomeric species, produced using a popular method based on lyophilization and rehydration, to lipid vesicles of different curvatures and compositions. We found that AS oligomerization has a profound impact on protein-lipid interaction, altering binding affinity and/or curvature sensitivity depending on membrane composition. Our work provides novel insights into how the formation of prefibrillar intermediate species could contribute to neurodegeneration due to a loss-of-function mechanism. OPEN PRACTICES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Asunto(s)
Péptidos beta-Amiloides/metabolismo , Membrana Celular/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/ultraestructura , Humanos , Membrana Dobles de Lípidos , Degeneración Nerviosa/patología , Unión Proteica , Conformación Proteica , Espectrometría de Fluorescencia , Vesículas Sinápticas/química , Vesículas Sinápticas/ultraestructura , alfa-Sinucleína/química , alfa-Sinucleína/ultraestructuraRESUMEN
We use an electrochemical platform, nanoparticle tracking analysis, and differential centrifugation of single catecholamine vesicles to study the properties of nanometer transmitter vesicles, including the number of molecules, size, and catecholamine concentration inside. Vesicle impact electrochemical cytometry (VIEC) was used to quantify the catecholamine content of single vesicles in different batches isolated from pheochromocytoma (PC12) cells with different ultracentrifugation speeds. We show that, vesicles containing less catecholamine are obtained at subsequent centrifugation steps with higher speed (force). Important to quantification, the cumulative content after subsequent centrifugation steps is equivalent to that of one-step centrifugation at the highest speed, 70 000g. Moreover, as we count molecules in the vesicles, we compared molecular numbers from VIEC, flow VIEC, and intracellular VIEC to corresponding vesicle size measured by nanoparticle tracking analysis to evaluate catecholamine concentration in vesicles. The data suggest that vesicular catecholamine concentration is relatively constant and independent of the vesicular size, indicating vesicular transmitter content as a main factor regulating the vesicle size.
Asunto(s)
Catecolaminas/análisis , Técnicas Electroquímicas/instrumentación , Vesículas Sinápticas/química , Animales , Fraccionamiento Celular , Diseño de Equipo , Nanopartículas/análisis , Células PC12 , Tamaño de la Partícula , Ratas , Análisis de la Célula Individual/instrumentación , UltracentrifugaciónRESUMEN
Kinesin superfamily protein UNC-104, a member of the kinesin-3 family, transports synaptic vesicle precursors (SVPs). In this study, the number of active UNC-104 molecules hauling a single SVP in axons in the worm Caenorhabditis elegans was counted by applying a newly developed non-invasive force measurement technique. The distribution of the force acting on a SVP transported by UNC-104 was spread out over several clusters, implying the presence of several force-producing units (FPUs). We then compared the number of FPUs in the wild-type worms with that in arl-8 gene-deletion mutant worms. ARL-8 is a SVP-bound arf-like small guanosine triphosphatase, and is known to promote unlocking of the autoinhibition of the motor, which is critical for avoiding unnecessary consumption of adenosine triphosphate when the motor does not bind to a SVP. There were fewer FPUs in the arl-8 mutant worms. This finding indicates that a lack of ARL-8 decreased the number of active UNC-104 motors, which then led to a decrease in the number of motors responsible for SVP transport.
Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , GTP Fosfohidrolasas/metabolismo , Cinesinas/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Transporte Axonal , Axones/metabolismo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Cinesinas/química , Microscopía Fluorescente , Mutagénesis , Vesículas Sinápticas/químicaRESUMEN
Synaptic ribbons are needed for fast and continuous exocytosis in ribbon synapses. RIBEYE is a main protein component of synaptic ribbons and is necessary to build the synaptic ribbon. RIBEYE consists of a unique A-domain and a carboxyterminal B-domain, which binds NAD(H). Within the presynaptic terminal, the synaptic ribbons are in physical contact with large numbers of synaptic vesicle (SV)s. How this physical contact between ribbons and synaptic vesicles is established at a molecular level is not well understood. In the present study, we demonstrate that the RIBEYE(B)-domain can directly interact with lipid components of SVs using two different sedimentation assays with liposomes of defined chemical composition. Similar binding results were obtained with a SV-containing membrane fraction. The binding of liposomes to RIBEYE(B) depends upon the presence of a small amount of lysophospholipids present in the liposomes. Interestingly, binding of liposomes to RIBEYE(B) depends on NAD(H) in a redox-sensitive manner. The binding is enhanced by NADH, the reduced form, and is inhibited by NAD+, the oxidized form. Lipid-mediated attachment of vesicles is probably part of a multi-step process that also involves additional, protein-dependent processes.