RESUMEN
The magnitude of the 2013-2016 Ebola virus disease (EVD) epidemic enabled an unprecedented number of viral mutations to occur over successive human-to-human transmission events, increasing the probability that adaptation to the human host occurred during the outbreak. We investigated one nonsynonymous mutation, Ebola virus (EBOV) glycoprotein (GP) mutant A82V, for its effect on viral infectivity. This mutation, located at the NPC1-binding site on EBOV GP, occurred early in the 2013-2016 outbreak and rose to high frequency. We found that GP-A82V had heightened ability to infect primate cells, including human dendritic cells. The increased infectivity was restricted to cells that have primate-specific NPC1 sequences at the EBOV interface, suggesting that this mutation was indeed an adaptation to the human host. GP-A82V was associated with increased mortality, consistent with the hypothesis that the heightened intrinsic infectivity of GP-A82V contributed to disease severity during the EVD epidemic.
Asunto(s)
Ebolavirus/genética , Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/virología , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , África Occidental/epidemiología , Sustitución de Aminoácidos , Animales , Callithrix , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Cheirogaleidae , Citoplasma/virología , Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/epidemiología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Proteína Niemann-Pick C1 , Conformación Proteica en Hélice alfa , Proteínas del Envoltorio Viral/metabolismo , Virión/química , Virión/patogenicidad , VirulenciaRESUMEN
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein substitution D614G became dominant during the coronavirus disease 2019 (COVID-19) pandemic1,2. However, the effect of this variant on viral spread and vaccine efficacy remains to be defined. Here we engineered the spike D614G substitution in the USA-WA1/2020 SARS-CoV-2 strain, and found that it enhances viral replication in human lung epithelial cells and primary human airway tissues by increasing the infectivity and stability of virions. Hamsters infected with SARS-CoV-2 expressing spike(D614G) (G614 virus) produced higher infectious titres in nasal washes and the trachea, but not in the lungs, supporting clinical evidence showing that the mutation enhances viral loads in the upper respiratory tract of COVID-19 patients and may increase transmission. Sera from hamsters infected with D614 virus exhibit modestly higher neutralization titres against G614 virus than against D614 virus, suggesting that the mutation is unlikely to reduce the ability of vaccines in clinical trials to protect against COVID-19, and that therapeutic antibodies should be tested against the circulating G614 virus. Together with clinical findings, our work underscores the importance of this variant in viral spread and its implications for vaccine efficacy and antibody therapy.
Asunto(s)
COVID-19/transmisión , COVID-19/virología , Aptitud Genética , Mutación , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/genética , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/uso terapéutico , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Cricetinae , Modelos Animales de Enfermedad , Humanos , Pulmón/virología , Masculino , Mesocricetus/virología , Modelos Biológicos , Mucosa Nasal/virología , Pruebas de Neutralización , Estabilidad Proteica , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Técnicas de Cultivo de Tejidos , Tráquea/virología , Carga Viral , Virión/química , Virión/patogenicidad , Virión/fisiología , Replicación Viral/genéticaRESUMEN
Truncations of the cytoplasmic tail (CT) of entry proteins of enveloped viruses dramatically increase the infectivity of pseudoviruses (PVs) bearing these proteins. Several mechanisms have been proposed to explain this enhanced entry, including an increase in cell surface expression. However, alternative explanations have also been forwarded, and the underlying mechanisms for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein remain undetermined. Here, we show that the partial or complete deletion of the CT (residues 19 to 35) does not modify SARS-CoV-2 S protein expression on the cell surface when the S2 subunit is measured, whereas it is significantly increased when the S1 subunit is measured. We also show that the higher level of S1 in these CT-truncated S proteins reflects the decreased dissociation of the S1 subunit from the S2 subunit. In addition, we demonstrate that CT truncation further promotes S protein incorporation into PV particles, as indicated by biochemical analyses and cryo-electron microscopy. Thus, our data show that two distinct mechanisms contribute to the markedly increased infectivity of PVs carrying CT-truncated SARS-CoV-2 S proteins and help clarify the interpretation of the results of studies employing such PVs. IMPORTANCE Various forms of PVs have been used as tools to evaluate vaccine efficacy and study virus entry steps. When PV infectivity is inherently low, such as that of SARS-CoV-2, a CT-truncated version of the viral entry glycoprotein is widely used to enhance PV infectivity, but the mechanism underlying this enhanced PV infectivity has been unclear. Here, our study identified two mechanisms by which the CT truncation of the SARS-CoV-2 S protein dramatically increases PV infectivity: a reduction of S1 shedding and an increase in S protein incorporation into PV particles. An understanding of these mechanisms can clarify the mechanistic bases for the differences observed among various assays employing such PVs.
Asunto(s)
SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Virión , Humanos , COVID-19/virología , Microscopía por Crioelectrón , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Virión/genética , Virión/patogenicidad , Regulación Viral de la Expresión Génica/genéticaRESUMEN
The majority of viruses infecting hyperthermophilic archaea display unique virion architectures and are evolutionarily unrelated to viruses of bacteria and eukaryotes. The lack of relationships to other known viruses suggests that the mechanisms of virus-host interaction in Archaea are also likely to be distinct. To gain insights into archaeal virus-host interactions, we studied the life cycle of the enveloped, â¼2-µm-long Sulfolobus islandicus filamentous virus (SIFV), a member of the family Lipothrixviridae infecting a hyperthermophilic and acidophilic archaeon Saccharolobus islandicus LAL14/1. Using dual-axis electron tomography and convolutional neural network analysis, we characterize the life cycle of SIFV and show that the virions, which are nearly two times longer than the host cell diameter, are assembled in the cell cytoplasm, forming twisted virion bundles organized on a nonperfect hexagonal lattice. Remarkably, our results indicate that envelopment of the helical nucleocapsids takes place inside the cell rather than by budding as in the case of most other known enveloped viruses. The mature virions are released from the cell through large (up to 220 nm in diameter), six-sided pyramidal portals, which are built from multiple copies of a single 89-amino-acid-long viral protein gp43. The overexpression of this protein in Escherichia coli leads to pyramid formation in the bacterial membrane. Collectively, our results provide insights into the assembly and release of enveloped filamentous viruses and illuminate the evolution of virus-host interactions in Archaea.
Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Lipothrixviridae/fisiología , Lipothrixviridae/patogenicidad , Sulfolobus/virología , Citoplasma/virología , Tomografía con Microscopio Electrónico , Escherichia coli/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virión/metabolismo , Virión/patogenicidadRESUMEN
The CA (capsid) domain of immature HIV-1 Gag and the adjacent spacer peptide 1 (SP1) play a key role in viral assembly by forming a lattice of CA hexamers, which adapts to viral envelope curvature by incorporating small lattice defects and a large gap at the site of budding. This lattice is stabilized by intrahexameric and interhexameric CA-CA interactions, which are important in regulating viral assembly and maturation. We applied subtomogram averaging and classification to determine the oligomerization state of CA at lattice edges and found that CA forms partial hexamers. These structures reveal the network of interactions formed by CA-SP1 at the lattice edge. We also performed atomistic molecular dynamics simulations of CA-CA interactions stabilizing the immature lattice and partial CA-SP1 helical bundles. Free energy calculations reveal increased propensity for helix-to-coil transitions in partial hexamers compared to complete six-helix bundles. Taken together, these results suggest that the CA dimer is the basic unit of lattice assembly, partial hexamers exist at lattice edges, these are in a helix-coil dynamic equilibrium, and partial helical bundles are more likely to unfold, representing potential sites for HIV-1 maturation initiation.
Asunto(s)
Proteínas de la Cápside/ultraestructura , Infecciones por VIH/genética , VIH-1/genética , Factor de Transcripción Sp1/ultraestructura , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/ultraestructura , Cápside/química , Cápside/ultraestructura , Proteínas de la Cápside/genética , Cristalografía por Rayos X , Infecciones por VIH/virología , Seropositividad para VIH , VIH-1/patogenicidad , VIH-1/ultraestructura , Humanos , Simulación de Dinámica Molecular , Multimerización de Proteína/genética , Proteolisis , Factor de Transcripción Sp1/química , Factor de Transcripción Sp1/genética , Virión/genética , Virión/patogenicidad , Ensamble de Virus/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genéticaRESUMEN
SERINC5 is a potent lentiviral restriction factor that gets incorporated into nascent virions and inhibits viral fusion and infectivity. The envelope glycoprotein (Env) is a key determinant for SERINC restriction, but many aspects of this relationship remain incompletely understood, and the mechanism of SERINC5 restriction remains unresolved. Here, we have used mutants of HIV-1 and HIV-2 to show that truncation of the Env cytoplasmic tail (ΔCT) confers complete resistance of both viruses to SERINC5 and SERINC3 restriction. Critically, fusion of HIV-1 ΔCT virus was not inhibited by SERINC5 incorporation into virions, providing a mechanism to explain how EnvCT truncation allows escape from restriction. Neutralization and inhibitor assays showed ΔCT viruses have an altered Env conformation and fusion kinetics, suggesting that EnvCT truncation dysregulates the processivity of entry, in turn allowing Env to escape targeting by SERINC5. Furthermore, HIV-1 and HIV-2 ΔCT viruses were also resistant to IFITMs, another entry-targeting family of restriction factors. Notably, while the EnvCT is essential for Env incorporation into HIV-1 virions and spreading infection in T cells, HIV-2 does not require the EnvCT. Here, we reveal a mechanism by which human lentiviruses can evade two potent Env-targeting restriction factors but show key differences in the capacity of HIV-1 and HIV-2 to exploit this. Taken together, this study provides insights into the interplay between HIV and entry-targeting restriction factors, revealing viral plasticity toward mechanisms of escape and a key role for the long lentiviral EnvCT in regulating these processes.
Asunto(s)
VIH-1/genética , VIH-2/genética , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Virión/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/inmunología , Línea Celular , Regulación de la Expresión Génica , Células HEK293 , Infecciones por VIH/genética , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/inmunología , VIH-1/patogenicidad , VIH-2/inmunología , VIH-2/patogenicidad , Células HeLa , Humanos , Evasión Inmune , Glicoproteínas de Membrana/inmunología , Proteínas de la Membrana/inmunología , Dominios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología , Transducción de Señal , Células Madre , Virión/inmunología , Virión/patogenicidad , Internalización del Virus , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunologíaRESUMEN
The extracellular virion (EV) form of Orthopoxviruses is required for cell-to-cell spread and pathogenesis, and is the target of neutralizing antibodies in the protective immune response. EV have a double envelope that contains several unique proteins that are involved in its intracellular envelopment and/or subsequent infectivity. One of these, F13, is involved in both EV formation and infectivity. Here, we report that replacement of vaccinia virus F13L with the molluscum contagiosum virus homolog, MC021L, results in the production of EV particles with significantly increased levels of EV glycoproteins, which correlate with a small plaque phenotype. Using a novel fluorescence-activated virion sorting assay to isolate EV populations based on glycoprotein content we determine that EV containing either higher or lower levels of glycoproteins are less infectious, suggesting that there is an optimal concentration of glycoproteins in the outer envelope that is required for maximal infectivity of EV. This optimal glycoprotein concentration was required for lethality and induction of pathology in a cutaneous model of animal infection, but was not required for induction of a protective immune response. Therefore, our results demonstrate that there is a sensitive balance between glycoprotein incorporation, infectivity, and pathogenesis, and that manipulation of EV glycoprotein levels can produce vaccine vectors in which pathologic side effects are attenuated without a marked diminution in induction of protective immunity.
Asunto(s)
Glicoproteínas/metabolismo , Virus Vaccinia/patogenicidad , Vaccinia/metabolismo , Proteínas Virales/metabolismo , Virión/patogenicidad , Animales , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Virus Vaccinia/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Virión/metabolismoRESUMEN
Biocidal agents such as formaldehyde and glutaraldehyde are able to inactivate several coronaviruses including SARS-CoV-2. In this article, an insight into one mechanism for the inactivation of these viruses by those two agents is presented, based on analysis of previous observations during electron microscopic examination of several members of the orthocoronavirinae subfamily, including the new virus SARS-CoV-2. This inactivation is proposed to occur through Schiff base reaction-induced conformational changes in the spike glycoprotein leading to its disruption or breakage, which can prevent binding of the virus to cellular receptors. Also, a new prophylactic and therapeutic measure against SARS-CoV-2 using acetoacetate is proposed, suggesting that it could similarly break the viral spike through Schiff base reaction with lysines of the spike protein. This measure needs to be confirmed experimentally before consideration. In addition, a new line of research is proposed to help find a broad-spectrum antivirus against several members of this subfamily.
Asunto(s)
Desinfectantes/farmacología , Cuerpos Cetónicos/farmacología , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , Antivirales/química , Antivirales/farmacología , Desinfectantes/química , Formaldehído/química , Formaldehído/farmacología , Glutaral/química , Glutaral/farmacología , Humanos , Cuerpos Cetónicos/química , Cuerpos Cetónicos/metabolismo , Cetosis/etiología , Cetosis/virología , SARS-CoV-2/patogenicidad , Virión/efectos de los fármacos , Virión/patogenicidadRESUMEN
Transmission electron microscopy has historically been indispensable for virology research, as it offers unique insight into virus function. In the past decade, as cryo-electron microscopy (cryo-EM) has matured and become more accessible, we have been able to peer into the structure of viruses at the atomic level and understand how they interact with the host cell, with drugs or with antibodies. Perhaps, there was no time in recent history where cryo-EM was more needed, as SARS-CoV-2 has spread around the globe, causing millions of deaths and almost unquantifiable economic devastation. In this concise review, we aim to mark the most important contributions of cryo-EM to understanding the structure and function of SARS-CoV-2 proteins, from surface spikes to the virus core and from virus-receptor interactions to antibody binding.
Asunto(s)
Enzima Convertidora de Angiotensina 2/química , Anticuerpos Antivirales/química , Vacunas contra la COVID-19/química , COVID-19/prevención & control , Receptores Virales/química , Glicoproteína de la Espiga del Coronavirus/química , Enzima Convertidora de Angiotensina 2/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Antivirales/biosíntesis , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/biosíntesis , Microscopía por Crioelectrón , Epítopos/química , Epítopos/inmunología , Epítopos/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Receptores Virales/inmunología , Receptores Virales/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad , SARS-CoV-2/ultraestructura , Serina Endopeptidasas/química , Serina Endopeptidasas/inmunología , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Virión/efectos de los fármacos , Virión/patogenicidad , Virión/ultraestructuraRESUMEN
Zika virus (ZIKV), formerly a neglected pathogen, has recently been associated with microcephaly in fetuses, and with Guillian-Barré syndrome in adults. Here we present the 3.7 Å resolution cryo-electron microscopy structure of ZIKV, and show that the overall architecture of the virus is similar to that of other flaviviruses. Sequence and structural comparisons of the ZIKV envelope (E) protein with other flaviviruses show that parts of the E protein closely resemble the neurovirulent West Nile and Japanese encephalitis viruses, while others are similar to dengue virus (DENV). However, the contribution of the E protein to flavivirus pathobiology is currently not understood. The virus particle was observed to be structurally stable even when incubated at 40 °C, in sharp contrast to the less thermally stable DENV. This is also reflected in the infectivity of ZIKV compared to DENV serotypes 2 and 4 (DENV2 and DENV4) at different temperatures. The cryo-electron microscopy structure shows a virus with a more compact surface. This structural stability of the virus may help it to survive in the harsh conditions of semen, saliva and urine. Antibodies or drugs that destabilize the structure may help to reduce the disease outcome or limit the spread of the virus.
Asunto(s)
Temperatura , Virión/química , Virión/ultraestructura , Virus Zika/química , Virus Zika/ultraestructura , Microscopía por Crioelectrón , Virus del Dengue/química , Virus del Dengue/clasificación , Virus del Dengue/patogenicidad , Virus de la Encefalitis Japonesa (Especie)/química , Humanos , Modelos Moleculares , Estabilidad Proteica , Saliva/virología , Semen/virología , Orina/virología , Proteínas del Envoltorio Viral/química , Virión/patogenicidad , Virus del Nilo Occidental/química , Virus Zika/patogenicidadRESUMEN
Uncoating is an obligatory step in the virus life cycle that serves as an antiviral target. Unfortunately, it is challenging to study viral uncoating due to methodology limitations for detecting this transient and dynamic event. The uncoating of influenza A virus (IAV), which contains an unusual genome of eight segmented RNAs, is particularly poorly understood. Here, by encapsulating quantum dot (QD)-conjugated viral ribonucleoprotein complexes (vRNPs) within infectious IAV virions and applying single-particle imaging, we tracked the uncoating process of individual IAV virions. Approximately 30% of IAV particles were found to undergo uncoating through fusion with late endosomes in the "around-nucleus" region at 30 to 90 minutes postinfection. Inhibition of viral M2 proton channels and cellular endosome acidification prevented IAV uncoating. IAV vRNPs are released separately into the cytosol after virus uncoating. Then, individual vRNPs undergo a three-stage movement to the cell nucleus and display two diffusion patterns when inside the nucleus. These findings reveal IAV uncoating and vRNP trafficking mechanisms, filling a critical gap in knowledge about influenza viral infection.
Asunto(s)
Virus de la Influenza A/metabolismo , Desencapsidación Viral , Animales , Núcleo Celular/metabolismo , Perros , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Virus de la Influenza A/fisiología , Células de Riñón Canino Madin Darby , Transporte de Proteínas , Puntos Cuánticos , ARN Viral/genética , Ribonucleoproteínas/metabolismo , Proteínas Virales/metabolismo , Virión/metabolismo , Virión/patogenicidad , Replicación ViralRESUMEN
Several next-generation (universal) influenza vaccines and broadly neutralizing antibodies (bNAbs) are in clinical development. Some of these mediate inhibitions of virus replication at the postentry stage or use Fc-dependent mechanisms. Nonneutralizing antibodies have the potential to mediate enhancement of viral infection or disease. In the current study, two monoclonal antibodies (MAbs) 72/8 and 69/1, enhanced respiratory disease (ERD) in mice following H3N2 virus challenge by demonstrating increased lung pathology and changes in lung cytokine/chemokine levels. MAb 78/2 caused changes in the lung viral loads in a dose-dependent manner. Both MAbs increased HA sensitivity to trypsin cleavage at a higher pH range, suggesting MAb-induced conformational changes. pHrodo-labeled virus particles' entry and residence time in the endocytic compartment were tracked during infection of Madin-Darby canine kidney (MDCK) cells. Both MAbs reduced H3N2 virus residence time in the endocytic pathway, suggesting faster virus fusion kinetics. Structurally, 78/2 and 69/1 Fabs bound the globular head or base of the head domain of influenza hemagglutinin (HA), respectively, and induced destabilization of the HA stem domain. Together, this study describes Mab-induced destabilization of the influenza HA stem domain, faster kinetics of influenza virus fusion, and ERD in vivo. The in vivo animal model and in vitro assays described could augment preclinical safety evaluation of antibodies and next-generation influenza vaccines that generate antibodies which do not block influenza virus-receptor interaction.
Asunto(s)
Anticuerpos Monoclonales/efectos adversos , Anticuerpos Antivirales/efectos adversos , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Pulmón/virología , Infecciones por Orthomyxoviridae/virología , Internalización del Virus/efectos de los fármacos , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Anticuerpos Antivirales/química , Anticuerpos Antivirales/metabolismo , Sitios de Unión , Perros , Endocitosis/efectos de los fármacos , Endocitosis/inmunología , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Pulmón/inmunología , Pulmón/patología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/patología , Unión Proteica , Proteolisis , Carga Viral/efectos de los fármacos , Virión/efectos de los fármacos , Virión/inmunología , Virión/patogenicidad , Replicación Viral/efectos de los fármacosRESUMEN
Tick-borne encephalitis virus (TBEV), a member of the genus Flavivirus, is common in Europe and Asia and causes a severe disease of the central nervous system. A promising approach in the development of therapy for TBEV infection is the search for small molecule antivirals targeting the flavivirus envelope protein E, particularly its ß-n-octyl-d-glucoside binding pocket (ß-OG pocket). However, experimental studies of candidate antivirals may be complicated by varying amounts and different forms of the protein E in the virus samples. Viral particles with different conformations and arrangements of the protein E are produced during the replication cycle of flaviviruses, including mature, partially mature, and immature forms, as well as subviral particles lacking genomic RNA. The immature forms are known to be abundant in the viral population. We obtained immature virion preparations of TBEV, characterized them by RT-qPCR, and assessed in vivo and in vitro infectivity of the residual mature virions in the immature virus samples. Analysis of the ß-OG pocket structure on the immature virions confirmed the possibility of binding of adamantylmethyl esters of 5-aminoisoxazole-3-carboxylic acid in the pocket. We demonstrated that the antiviral activity of these compounds in plaque reduction assay is significantly reduced in the presence of immature TBEV particles.
Asunto(s)
Adamantano/farmacología , Antivirales/farmacología , Virus de la Encefalitis Transmitidos por Garrapatas/efectos de los fármacos , Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Encefalitis Transmitida por Garrapatas/virología , Isoxazoles/farmacología , Virión/fisiología , Adamantano/metabolismo , Animales , Antivirales/metabolismo , Línea Celular , Virus de la Encefalitis Transmitidos por Garrapatas/crecimiento & desarrollo , Virus de la Encefalitis Transmitidos por Garrapatas/patogenicidad , Glucósidos/metabolismo , Isoxazoles/metabolismo , Ratones , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Porcinos , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Ensayo de Placa Viral , Virión/inmunología , Virión/patogenicidad , Virión/ultraestructuraRESUMEN
Apolipoprotein B editing enzyme, catalytic polypeptide 3 (APOBEC3) family members are cytidine deaminases that play important roles in intrinsic responses to retrovirus infection. Complex retroviruses like human immunodeficiency virus type 1 (HIV-1) encode the viral infectivity factor (Vif) protein to counteract APOBEC3 proteins. Vif induces degradation of APOBEC3G and other APOBEC3 proteins and thereby prevents their packaging into virions. It is not known if murine leukemia virus (MLV) encodes a Vif-like protein. Here, we show that the MLV P50 protein, produced from an alternatively spliced gag RNA, interacts with the C terminus of mouse APOBEC3 and prevents its packaging without causing its degradation. By infecting APOBEC3 knockout (KO) and wild-type (WT) mice with Friend or Moloney MLV P50-deficient viruses, we found that APOBEC3 restricts the mutant viruses more than WT viruses in vivo Replication of P50-mutant viruses in an APOBEC3-expressing stable cell line was also much slower than that of WT viruses, and overexpressing P50 in this cell line enhanced mutant virus replication. Thus, MLV encodes a protein, P50, that overcomes APOBEC3 restriction by preventing its packaging into virions.IMPORTANCE MLV has existed in mice for at least a million years, in spite of the existence of host restriction factors that block infection. Although MLV is considered a simple retrovirus compared to lentiviruses, it does encode proteins generated from alternatively spliced RNAs. Here, we show that P50, generated from an alternatively spliced RNA encoded in gag, counteracts APOBEC3 by blocking its packaging. MLV also encodes a protein, glycoGag, that increases capsid stability and limits APOBEC3 access to the reverse transcription complex (RTC). Thus, MLV has evolved multiple means of preventing APOBEC3 from blocking infection, explaining its survival as an infectious pathogen in mice.
Asunto(s)
Citidina Desaminasa/genética , Regulación Viral de la Expresión Génica , Productos del Gen gag/genética , Leucemia Experimental/genética , Virus de la Leucemia Murina de Moloney/genética , Infecciones por Retroviridae/genética , Infecciones Tumorales por Virus/genética , Empalme Alternativo , Animales , Cápside/metabolismo , Citidina Desaminasa/deficiencia , Productos del Gen gag/metabolismo , Células HEK293 , Interacciones Huésped-Patógeno/genética , Humanos , Leucemia Experimental/metabolismo , Leucemia Experimental/virología , Ratones , Ratones Noqueados , Virus de la Leucemia Murina de Moloney/metabolismo , Virus de la Leucemia Murina de Moloney/patogenicidad , Células 3T3 NIH , Infecciones por Retroviridae/metabolismo , Infecciones por Retroviridae/virología , Transducción de Señal , Infecciones Tumorales por Virus/metabolismo , Infecciones Tumorales por Virus/virología , Virión/genética , Virión/metabolismo , Virión/patogenicidad , Replicación ViralRESUMEN
Nucleos(t)ide analogues (NAs) have been widely used for the treatment of chronic hepatitis B (CHB). Because viral DNA polymerase lacks proofreading function (3' exonuclease activity), theoretically, the incorporated NAs would irreversibly terminate viral DNA synthesis. This study explored the natures of nascent hepatitis B virus (HBV) DNA and infectivity of progeny virions produced under NA treatment. HBV infectivity was determined by infection of HepG2-NTCP cells and primary human hepatocytes (PHHs). Biochemical properties of HBV DNA in the progeny virions were investigated by qPCR, northern blotting, or Southern blotting hybridization, sucrose gradient centrifugation, and in vitro endogenous DNA polymerase assay. Progeny HBV virions produced under NA treatment were mainly not infectious to HepG2-NTCP cells or PHHs. Biochemical analysis revealed that under NA treatment, HBV DNA in nucleaocapsids or virions were predominantly short minus-strand DNA with irreversible termination. This finding was supported by the observation of first disappearance of relaxed circular DNA and then the proportional decline of HBV-DNA levels corresponding to the regions of PreC/C, S, and X genes in serial sera of patients receiving NA treatment. Conclusion: HBV virions produced under NA treatment are predominantly replication deficient because the viral genomes are truncated and elongation of DNA chains is irreversibly terminated. Clinically, our results suggest that the viral loads of CHB patients under NA therapy vary with the different regions of genome being detected by qPCR assays. Our findings also imply that NA prevention of perinatal and sexual HBV transmission as well as infection of transplanted livers works not only by reducing viral loads, but also by producing noninfectious virions.
Asunto(s)
ADN Viral/fisiología , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/patogenicidad , Hepatitis B Crónica/virología , Nucleósidos/uso terapéutico , Virión/genética , Virión/patogenicidad , Virus de la Hepatitis B/ultraestructura , Hepatitis B Crónica/tratamiento farmacológico , HumanosRESUMEN
Interferon-induced transmembrane proteins (IFITMs 1, 2 and 3) have emerged as important innate immune effectors that prevent diverse virus infections in vertebrates. However, the cellular mechanisms and live-cell imaging of these small membrane proteins have been challenging to evaluate during viral entry of mammalian cells. Using CRISPR-Cas9-mediated IFITM-mutant cell lines, we demonstrate that human IFITM1, IFITM2 and IFITM3 act cooperatively and function in a dose-dependent fashion in interferon-stimulated cells. Through site-specific fluorophore tagging and live-cell imaging studies, we show that IFITM3 is on endocytic vesicles that fuse with incoming virus particles and enhances the trafficking of this pathogenic cargo to lysosomes. IFITM3 trafficking is specific to restricted viruses, requires S-palmitoylation and is abrogated with loss-of-function mutants. The site-specific protein labeling and live-cell imaging approaches described here should facilitate the functional analysis of host factors involved in pathogen restriction as well as their mechanisms of regulation.
Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/fisiología , Vesículas Transportadoras/fisiología , Células A549 , Animales , Antígenos de Diferenciación/metabolismo , Antivirales , Endosomas/fisiología , Células HeLa , Humanos , Lisosomas/fisiología , Imagen Óptica/métodos , Transporte de Proteínas , Virión/patogenicidad , Internalización del VirusRESUMEN
Anguillid herpesvirus 1 (AngHV) is one of the vital pathogenic agents found in the wild and cultured eel populations, which has brought significant losses to eel culture industry in China. In this study, AngHV ORF95 was characterized. Bioinformatics analysis showed that ORF95 putatively encodes a structural protein that is homologous to hemagglutinin-esterase (HE) protein of infectious salmon anemia virus (ISAV). Temporal transcription and expression analysis indicated that ORF95 is a viral late gene. Subcellular localization analysis revealed that ORF95 was predominantly localized in the cytoplasm. Further, western blot analysis indicated that ORF95 is a structural protein of virion envelope. These results provide a novel basis to make further efforts to clarify the function of ORF95 in the process of AngHV infection and the possibility to use ORF95 as antigen to develop AngHV subunit vaccine.
Asunto(s)
Anguilas/virología , Hemaglutininas Virales/genética , Herpesviridae/genética , Sistemas de Lectura Abierta/genética , Proteínas Virales de Fusión/genética , Animales , Anguilas/genética , Enfermedades de los Peces/genética , Enfermedades de los Peces/virología , Herpesviridae/aislamiento & purificación , Herpesviridae/patogenicidad , Isavirus/genética , Virión/genética , Virión/patogenicidadRESUMEN
Bacillus virus Bam35 is the model Betatectivirus and member of the family Tectiviridae, which is composed of tailless, icosahedral, and membrane-containing bacteriophages. Interest in these viruses has greatly increased in recent years as they are thought to be an evolutionary link between diverse groups of prokaryotic and eukaryotic viruses. Additionally, betatectiviruses infect bacteria of the Bacillus cereus group, which are known for their applications in industry and notorious since it contains many pathogens. Here, we present the first protein-protein interactions (PPIs) network for a tectivirus-host system by studying the Bam35-Bacillus thuringiensis model using a novel approach that integrates the traditional yeast two-hybrid system and high-throughput sequencing (Y2H-HTS). We generated and thoroughly analyzed a genomic library of Bam35's host B. thuringiensis HER1410 and screened interactions with all the viral proteins using different combinations of bait-prey couples. Initial analysis of the raw data enabled the identification of over 4000 candidate interactions, which were sequentially filtered to produce 182 high-confidence interactions that were defined as part of the core virus-host interactome. Overall, host metabolism proteins and peptidases were particularly enriched within the detected interactions, distinguishing this host-phage system from the other reported host-phage PPIs. Our approach also suggested biological roles for several Bam35 proteins of unknown function, including the membrane structural protein P25, which may be a viral hub with a role in host membrane modification during viral particle morphogenesis. This work resulted in a better understanding of the Bam35-B. thuringiensis interaction at the molecular level and holds great potential for the generalization of the Y2H-HTS approach for other virus-host models.
Asunto(s)
Bacillus thuringiensis/virología , Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Tectiviridae/fisiología , Proteínas Virales/metabolismo , Bacillus thuringiensis/genética , Proteínas Bacterianas/genética , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Sistemas de Lectura Abierta , Mapas de Interacción de Proteínas , Saccharomyces cerevisiae/genética , Tectiviridae/patogenicidad , Técnicas del Sistema de Dos Híbridos , Proteínas Virales/genética , Virión/patogenicidad , Virión/fisiologíaRESUMEN
Baculovirus entry into insect midgut cells is dependent on a multiprotein complex of per os infectivity factors (PIFs) on the envelopes of occlusion-derived virions (ODVs). The structure and assembly of the PIF complex are largely unknown. To reveal the complete members of the complex, a combination of blue native polyacrylamide gel electrophoresis, liquid chromatography-tandem mass spectrometry, and Western blotting was conducted on three different baculoviruses. The results showed that the PIF complex has a molecular mass of â¼500 kDa and consists of nine PIFs, including a newly discovered member (PIF9). To decipher the assembly process, each pif gene was knocked out from the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) genome individually by use of synthetic baculovirus technology, and the impact on PIF complex formation was investigated. Deletion of pif8 resulted in the formation of an â¼400-kDa subcomplex. Deletion of pif0, -4, -6, -7, or -9 resulted in a subcomplex of â¼230 kDa, but deletion of pif1, -2, or -3 abolished formation of any complex. Taken together, our data identified a core complex of â¼230 kDa, consisting of PIF1, -2, and -3. This revised the previous knowledge that the core complex was about 170 kDa and contained PIF1 to -4. Analysis of the PIF complex in cellular fractions suggested that it is assembled in the cytoplasm before being transported to the nucleus and subsequently incorporated into the envelopes of ODVs. Only the full complex, not the subcomplex, is resistant to proteolytic attack, indicating the essentiality of correct complex assembly for oral infection.IMPORTANCE Entry of baculovirus into host insects is mediated by a per os infectivity factor (PIF) complex on the envelopes of occlusion-derived viruses (ODVs). Knowledge of the composition and structure of the PIF complex is fundamental to understanding its mode of action. By using multiple approaches, we determined the complete list of proteins (nine) in the PIF complex. In contrast to previous knowledge in the field, the core complex is revised to â¼230 kDa and consists of PIF1 to -3 but not PIF4. Interestingly, our results suggest that the PIF complex is formed in the cytoplasm prior to its transport to the nucleus and subsequent incorporation into ODVs. Only the full complex is resistant to proteolytic degradation in the insect midgut, implying the critical role of the entire complex. These findings provide the baseline for future studies on the ODV entry mechanism mediated by the multiprotein complex.
Asunto(s)
Baculoviridae/metabolismo , Baculoviridae/patogenicidad , Factores de Virulencia/metabolismo , Animales , Línea Celular , Infecciones por Virus ADN , Insectos/virología , Nucleopoliedrovirus/patogenicidad , Células Sf9 , Proteínas del Envoltorio Viral/metabolismo , Virión/patogenicidadRESUMEN
Positive strand RNA viruses, such as dengue virus type 2 (DENV2) expand and structurally alter ER membranes to optimize cellular communication pathways that promote viral replicative needs. These complex rearrangements require significant protein scaffolding as well as changes to the ER chemical composition to support these structures. We have previously shown that the lipid abundance and repertoire of host cells are significantly altered during infection with these viruses. Specifically, enzymes in the lipid biosynthesis pathway such as fatty acid synthase (FAS) are recruited to viral replication sites by interaction with viral proteins and displayed enhanced activities during infection. We have now identified that events downstream of FAS (fatty acid desaturation) are critical for virus replication. In this study we screened enzymes in the unsaturated fatty acid (UFA) biosynthetic pathway and found that the rate-limiting enzyme in monounsaturated fatty acid biosynthesis, stearoyl-CoA desaturase 1 (SCD1), is indispensable for DENV2 replication. The enzymatic activity of SCD1, was required for viral genome replication and particle release, and it was regulated in a time-dependent manner with a stringent requirement early during viral infection. As infection progressed, SCD1 protein expression levels were inversely correlated with the concentration of viral dsRNA in the cell. This modulation of SCD1, coinciding with the stage of viral replication, highlighted its function as a trigger of early infection and an enzyme that controlled alternate lipid requirements during early versus advanced infections. Loss of function of this enzyme disrupted structural alterations of assembled viral particles rendering them non-infectious and immature and defective in viral entry. This study identifies the complex involvement of SCD1 in DENV2 infection and demonstrates that these viruses alter ER lipid composition to increase infectivity of the virus particles.