Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 415
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 118(5): 1516-1527, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38412295

RESUMEN

Bacterial wilt, caused by Xanthomonas translucens pv. graminis (Xtg), is a serious disease of economically important forage grasses, including Italian ryegrass (Lolium multiflorum Lam.). A major QTL for resistance to Xtg was previously identified, but the precise location as well as the genetic factors underlying the resistance are yet to be determined. To this end, we applied a bulked segregant analysis (BSA) approach, using whole-genome deep sequencing of pools of the most resistant and most susceptible individuals of a large (n = 7484) biparental F2 population segregating for resistance to Xtg. Using chromosome-level genome assemblies as references, we were able to define a ~300 kb region highly associated with resistance on pseudo-chromosome 4. Further investigation of this region revealed multiple genes with a known role in disease resistance, including genes encoding for Pik2-like disease resistance proteins, cysteine-rich kinases, and RGA4- and RGA5-like disease resistance proteins. Investigation of allele frequencies in the pools and comparative genome analysis in the grandparents of the F2 population revealed that some of these genes contain variants with allele frequencies that correspond to the expected heterozygosity in the resistant grandparent. This study emphasizes the efficacy of combining BSA studies in very large populations with whole genome deep sequencing and high-quality genome assemblies to pinpoint regions associated with a binary trait of interest and accurately define a small set of candidate genes. Furthermore, markers identified in this region hold significant potential for marker-assisted breeding strategies to breed resistance to Xtg in Italian ryegrass cultivars more efficiently.


Asunto(s)
Resistencia a la Enfermedad , Lolium , Enfermedades de las Plantas , Xanthomonas , Lolium/genética , Lolium/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Xanthomonas/fisiología , Sitios de Carácter Cuantitativo/genética , Genes de Plantas/genética , Mapeo Cromosómico
2.
Plant J ; 118(5): 1528-1549, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38507319

RESUMEN

Rapid alkalinization factors (RALFs), belonging to a family of small secreted peptides, have been considered as important signaling molecules in diverse biological processes, including immunity. Current studies on RALF-modulated immunity mainly focus on Arabidopsis, but little is reported in crop plants. The rice immune receptor XA21 confers immunity to the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae (Xoo). Here, we pursued functional characterization of rice RALF26 (OsRALF26) up-regulated by Xoo during XA21-mediated immune response. When applied exogenously as a recombinant peptide, OsRALF26 induced a series of immune responses, including pathogenesis-related genes (PRs) induction, reactive oxygen species (ROS) production, and callose deposition in rice and/or Arabidopsis. Transgenic rice and Arabidopsis overexpressing OsRALF26 exhibited significantly enhanced resistance to Xoo and Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), respectively. In yeast two-hybrid, pull-down assays, and co-immunoprecipitation analyses, rice FER-like receptor 1 (OsFLR1) was identified as a receptor of OsRALF26. Transient expression of OsFLR1 in Nicotiana benthamiana leaves displayed significantly increased ROS production and callose deposition after OsRALF26 treatment. Together, we propose that OsRALF26 induced by Xoo in an XA21-dependent manner is perceived by OsFLR1 and may play a novel role in the enforcement of XA21-mediated immunity.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Oryza , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno , Xanthomonas , Oryza/genética , Oryza/microbiología , Oryza/inmunología , Oryza/metabolismo , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/microbiología , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Xanthomonas/fisiología , Xanthomonas/patogenicidad , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Especies Reactivas de Oxígeno/metabolismo , Resistencia a la Enfermedad/genética , Glucanos/metabolismo , Pseudomonas syringae/patogenicidad , Pseudomonas syringae/fisiología
3.
Plant Physiol ; 195(1): 785-798, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38159040

RESUMEN

Rice (Oryza sativa) bacterial blight, caused by Xanthomonas oryzae pv. Oryzae (Xoo), threatens plant growth and yield. However, the molecular mechanisms underlying rice immunity against Xoo remain elusive. Here, we identified a NAC (NAM-ATAF-CUC) transcription factor OsNAC2 as a negative regulator in the resistance to bacterial blight disease in rice. Constitutive overexpression of OsNAC2 inhibited the expression of salicylic acid (SA) biosynthesis-related genes (i.e. isochorismate synthase 1 (OsICS1), phenylalanine ammonia lyase 3 (OsPAL3), etc.) with adverse impacts on the pathogenesis-related proteins (PRs) responses and compromised blight resistance. Moreover, OsNAC2 interacted with APETALA2/ethylene-responsive element binding protein (AP2/EREBP) transcription factor OsEREBP1 and possibly threatened its protein stability, destroying the favorable interaction of OsEREBP1-Xa21-binding protein OsXb22a in the cytoplasm during Xoo-induced infection. On the contrary, downregulation of OsNAC2 resulted in enhanced resistance to bacterial blight in rice without any growth or yield penalties. Our results demonstrated that OsNAC2 inhibits SA signaling and stably interacted with OsEREBP1 to impair disease resistance. This OsNAC2-OsEREBP1-based homeostatic mechanism provided insights into the competition between rice and bacterial pathogens, and it will be useful to improve the disease resistance of important crops through breeding.


Asunto(s)
Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Homeostasis , Oryza , Enfermedades de las Plantas , Proteínas de Plantas , Factores de Transcripción , Xanthomonas , Oryza/genética , Oryza/microbiología , Oryza/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xanthomonas/fisiología , Xanthomonas/patogenicidad , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Resistencia a la Enfermedad/genética , Inmunidad de la Planta/genética , Ácido Salicílico/metabolismo
4.
Plant Cell ; 34(5): 1822-1843, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35171277

RESUMEN

Deployment of broad-spectrum disease resistance against multiple pathogen species is an efficient way to control plant diseases. Here, we identify a Microtubule-associated C4HC3-type E3 Ligase (MEL) in both Nicotiana benthamiana and Oryza sativa, and show that it is able to integrate and initiate a series of host immune signaling, conferring broad-spectrum resistance to viral, fungal, and bacterial pathogens. We demonstrate that MEL forms homodimer through intermolecular disulfide bonds between its cysteine residues in the SWIM domain, and interacts with its substrate serine hydroxymethyltrasferase 1 (SHMT1) through the YφNL motif. Ubiquitin ligase activity, homodimerization and YφNL motif are indispensable for MEL to regulate plant immunity by mediating SHMT1 degradation through the 26S proteasome pathway. Our findings provide a fundamental basis for utilizing the MEL-SHMT1 module to generate broad-spectrum-resistant rice to global destructive pathogens including rice stripe virus, Magnaporthe oryzae, and Xanthomonas oryzae pv. oryzae.


Asunto(s)
Magnaporthe , Oryza , Xanthomonas , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Magnaporthe/fisiología , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Xanthomonas/fisiología
5.
Mol Plant Microbe Interact ; 37(4): 357-369, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38105438

RESUMEN

Type IV pili (TFP) play a crucial role in the sensing of the external environment for several bacteria. This surface sensing is essential for the lifestyle transitions of several bacteria and involvement in pathogenesis. However, the precise mechanisms underlying TFP's integration of environmental cues, particularly in regulating the TFP-Chp system and its effects on Xanthomonas physiology, social behavior, and virulence, remain poorly understood. In this study, we focused on investigating Clp, a global transcriptional regulator similar to CRP-like proteins, in Xanthomonas oryzae pv. oryzae, a plant pathogen. Our findings reveal that Clp integrates environmental cues detected through diffusible signaling factor (DSF) quorum sensing into the TFP-Chp regulatory system. It accomplishes this by directly binding to TFP-Chp promoters in conjunction with intracellular levels of cyclic-di-GMP, a ubiquitous bacterial second messenger, thereby controlling TFP expression. Moreover, Clp-mediated regulation is involved in regulating several cellular processes, including the production of virulence-associated functions. Collectively, these processes contribute to host colonization and disease initiation. Our study elucidates the intricate regulatory network encompassing Clp, environmental cues, and the TFP-Chp system, providing insights into the molecular mechanisms that drive bacterial virulence in Xanthomonas spp. These findings offer valuable knowledge regarding Xanthomonas pathogenicity and present new avenues for innovative strategies aimed at combating plant diseases caused by these bacteria. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Proteínas Bacterianas , GMP Cíclico/análogos & derivados , Fimbrias Bacterianas , Regulación Bacteriana de la Expresión Génica , Enfermedades de las Plantas , Regiones Promotoras Genéticas , Xanthomonas , Xanthomonas/patogenicidad , Xanthomonas/genética , Xanthomonas/metabolismo , Xanthomonas/fisiología , Virulencia , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/genética , Regiones Promotoras Genéticas/genética , Enfermedades de las Plantas/microbiología , Percepción de Quorum , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Oryza/microbiología , GMP Cíclico/metabolismo
6.
Biochem Biophys Res Commun ; 700: 149568, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38306931

RESUMEN

Rice is a staple crop continually threatened by bacterial and fungal pathogens. OsWRKY transcription factors are involved in various disease responses. However, the functions of many OsWRKYs are still elusive. In this study, we demonstrated that OsWRKY7 enhances rice immunity against Xanthomonas oryzae pv. oryzae (Xoo). OsWRKY7 localized in the nucleus, and gene expression of OsWRKY7 was induced by Xoo inoculation. The OsWRKY7-overexpressing lines showed enhanced resistant phenotype against Xoo, and gene expressions of OsPR1a, OsPR1b, and OsPR10a were significantly increased in the transgenic lines after Xoo inoculation. Moreover, OsWRKY7 activated the OsPR promoters, and the promoter activities were synergistically upregulated by flg22. Genetic- and cell-based analysis showed OsWRKY7 is involved in pattern-triggered immunity against Xoo. These results suggest that OsWRKY7 plays a role as a positive regulator of disease resistance to Xoo through pattern-triggered immunity.


Asunto(s)
Oryza , Xanthomonas , Reconocimiento de Inmunidad Innata , Xanthomonas/fisiología , Regiones Promotoras Genéticas , Resistencia a la Enfermedad/genética , Oryza/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
7.
BMC Plant Biol ; 24(1): 145, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38413866

RESUMEN

BACKGROUND: Alternative polyadenylation (APA) is an important pattern of post-transcriptional regulation of genes widely existing in eukaryotes, involving plant physiological and pathological processes. However, there is a dearth of studies investigating the role of APA profile in rice leaf blight. RESULTS: In this study, we compared the APA profile of leaf blight-susceptible varieties (CT 9737-613P-M) and resistant varieties (NSIC RC154) following bacterial blight infection. Through gene enrichment analysis, we found that the genes of two varieties typically exhibited distal poly(A) (PA) sites that play different roles in two kinds of rice, indicating differential APA regulatory mechanisms. In this process, many disease-resistance genes displayed multiple transcripts via APA. Moreover, we also found five polyadenylation factors of similar expression patterns of rice, highlighting the critical roles of these five factors in rice response to leaf blight about PA locus diversity. CONCLUSION: Notably, the present study provides the first dynamic changes of APA in rice in early response to biotic stresses and proposes a possible functional conjecture of APA in plant immune response, which lays the theoretical foundation for in-depth determination of the role of APA events in plant stress response and other life processes.


Asunto(s)
Oryza , Xanthomonas , RNA-Seq , Oryza/metabolismo , Poliadenilación/genética , Resistencia a la Enfermedad/genética , Estrés Fisiológico , Xanthomonas/fisiología , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas
8.
BMC Plant Biol ; 24(1): 347, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684939

RESUMEN

BACKGROUND: Two-tiered plant immune responses involve cross-talk among defense-responsive (DR) genes involved in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), effector-triggered immunity (ETI) and effector-triggered susceptibility (ETS). Bacterial leaf streak (BLS), caused by Xanthomonas oryzae pv. oryzicola (Xoc) is an important bacterial disease that causes serious threats to rice yield and quality. Transcriptomic profiling provides an effective approach for the comprehensive and large-scale detection of DR genes that participate in the interactions between rice and Xoc. RESULTS: In this study, we used RNA-seq to analyze the differentially expressed genes (DEGs) in susceptible rice after inoculation with two naturally pathogenic Xoc strains, a hypervirulent strain, HGA4, and a relatively hypovirulent strain, RS105. First, bacterial growth curve and biomass quantification revealed that differential growth occurred beginning at 1 day post inoculation (dpi) and became more significant at 3 dpi. Additionally, we analyzed the DEGs at 12 h and 3 days post inoculation with two strains, representing the DR genes involved in the PTI and ETI/ETS responses, respectively. Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed on the common DEGs, which included 4380 upregulated and 4019 downregulated genes and 930 upregulated and 1383 downregulated genes identified for the two strains at 12 h post inoculation (hpi) and 3 dpi, respectively. Compared to those at 12 hpi, at 3 dpi the number of common DEGs decreased, while the degree of differential expression was intensified. In addition, more disease-related GO pathways were enriched, and more transcription activator-like effector (TALE) putative target genes were upregulated in plants inoculated with HGA4 than in those inoculated with RS105 at 3 dpi. Then, four DRs were randomly selected for the BLS resistance assay. We found that CDP3.10, LOC_Os11g03820, and OsDSR2 positively regulated rice resistance to Xoc, while OsSPX3 negatively regulated rice resistance. CONCLUSIONS: By using an enrichment method for RNA-seq, we identified a group of DEGs related to the two stages of response to the Xoc strain, which included four functionally identified DR genes.


Asunto(s)
Perfilación de la Expresión Génica , Oryza , Enfermedades de las Plantas , Xanthomonas , Xanthomonas/patogenicidad , Xanthomonas/fisiología , Xanthomonas/genética , Oryza/microbiología , Oryza/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Transcriptoma , Interacciones Huésped-Patógeno/genética , Inmunidad de la Planta/genética , Regulación de la Expresión Génica de las Plantas
9.
New Phytol ; 242(6): 2734-2745, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581188

RESUMEN

Cassava is one of the most important tropical crops, but it is seriously affected by cassava bacteria blight (CBB) caused by the bacterial pathogen Xanthomonas phaseoli pv manihotis (Xam). So far, how pathogen Xam infects and how host cassava defends during pathogen-host interaction remains elusive, restricting the prevention and control of CBB. Here, the illustration of HEAT SHOCK PROTEIN 90 kDa (MeHSP90.9) interacting proteins in both cassava and bacterial pathogen revealed the dual roles of MeHSP90.9 in cassava-Xam interaction. On the one hand, calmodulin-domain protein kinase 1 (MeCPK1) directly interacted with MeHSP90.9 to promote its protein phosphorylation at serine 175 residue. The protein phosphorylation of MeHSP90.9 improved the transcriptional activation of MeHSP90.9 clients (SHI-RELATED SEQUENCE 1 (MeSRS1) and MeWRKY20) to the downstream target genes (avrPphB Susceptible 3 (MePBS3) and N-aceylserotonin O-methyltransferase 2 (MeASMT2)) and immune responses. On the other hand, Xanthomonas outer protein C2 (XopC2) physically associated with MeHSP90.9 to inhibit its interaction with MeCPK1 and the corresponding protein phosphorylation by MeCPK1, so as to repress host immune responses and promote bacterial pathogen infection. In summary, these results provide new insights into genetic improvement of cassava disease resistance and extend our understanding of cassava-bacterial pathogen interaction.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Manihot , Enfermedades de las Plantas , Proteínas de Plantas , Fosforilación , Proteínas HSP90 de Choque Térmico/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Manihot/microbiología , Manihot/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Xanthomonas/fisiología , Xanthomonas/patogenicidad , Interacciones Huésped-Patógeno , Unión Proteica , Regulación de la Expresión Génica de las Plantas , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Resistencia a la Enfermedad/genética
10.
New Phytol ; 243(1): 362-380, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38730437

RESUMEN

Plants typically activate distinct defense pathways against various pathogens. Heightened resistance to one pathogen often coincides with increased susceptibility to another pathogen. However, the underlying molecular basis of this antagonistic response remains unclear. Here, we demonstrate that mutants defective in the transcription factor ETHYLENE-INSENSITIVE 3-LIKE 2 (OsEIL2) exhibited enhanced resistance to the biotrophic bacterial pathogen Xanthomonas oryzae pv oryzae and to the hemibiotrophic fungal pathogen Magnaporthe oryzae, but enhanced susceptibility to the necrotrophic fungal pathogen Rhizoctonia solani. Furthermore, necrotroph-induced OsEIL2 binds to the promoter of OsWRKY67 with high affinity, leading to the upregulation of salicylic acid (SA)/jasmonic acid (JA) pathway genes and increased SA/JA levels, ultimately resulting in enhanced resistance. However, biotroph- and hemibiotroph-induced OsEIL2 targets OsERF083, resulting in the inhibition of SA/JA pathway genes and decreased SA/JA levels, ultimately leading to reduced resistance. Our findings unveil a previously uncharacterized defense mechanism wherein two distinct transcriptional regulatory modules differentially mediate immunity against pathogens with different lifestyles through the transcriptional reprogramming of phytohormone pathway genes.


Asunto(s)
Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Oryza , Oxilipinas , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Rhizoctonia , Ácido Salicílico , Xanthomonas , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Ciclopentanos/metabolismo , Oryza/microbiología , Oryza/genética , Oryza/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Xanthomonas/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rhizoctonia/fisiología , Inmunidad de la Planta/efectos de los fármacos , Mutación/genética , Resistencia a la Enfermedad/genética , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Unión Proteica/efectos de los fármacos
11.
Plant Physiol ; 193(2): 1635-1651, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37403194

RESUMEN

Plant immune responses involve transcriptional reprograming of defense response genes, and chromatin remodeling is important for transcriptional regulation. However, nucleosome dynamics induced by pathogen infection and its association with gene transcription are largely unexplored in plants. Here, we investigated the role of the rice (Oryza sativa) gene CHROMATIN REMODELING 11 (OsCHR11) in nucleosome dynamics and disease resistance. Nucleosome profiling revealed that OsCHR11 is required for the maintaining of genome-wide nucleosome occupancy in rice. Nucleosome occupancy of 14% of the genome was regulated by OsCHR11. Infection of bacterial leaf blight Xoo (Xanthomonas oryzae pv. oryzae) repressed genome-wide nucleosome occupancy, and this process depended on OsCHR11 function. Furthermore, OsCHR11/Xoo-dependent chromatin accessibility correlated with gene transcript induction by Xoo. In addition, accompanied by increased resistance to Xoo, several defense response genes were differentially expressed in oschr11 after Xoo infection. Overall, this study reports the genome-wide effects of pathogen infection on nucleosome occupancy, its regulation, and its contribution to disease resistance in rice.


Asunto(s)
Oryza , Xanthomonas , Resistencia a la Enfermedad/genética , Nucleosomas , Oryza/microbiología , Cromatina , Ensamble y Desensamble de Cromatina/genética , Xanthomonas/fisiología , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas
12.
Plant Physiol ; 192(2): 1132-1150, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36815292

RESUMEN

Lesion mimic mutants (LMMs) are valuable genetic resources for unraveling plant defense responses including programmed cell death. Here, we identified a rice (Oryza sativa) LMM, spotted leaf 38 (spl38), and demonstrated that spl38 is essential for the formation of hypersensitive response-like lesions and innate immunity. Map-based cloning revealed that SPL38 encodes MEDIATOR SUBUNIT 16 (OsMED16). The spl38 mutant showed enhanced resistance to rice pathogens Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae (Xoo) and exhibited delayed flowering, while OsMED16-overexpressing plants showed increased rice susceptibility to M. oryzae. The OsMED16-edited rice lines were phenotypically similar to the spl38 mutant but were extremely weak, exhibited growth retardation, and eventually died. The C-terminus of OsMED16 showed interaction with the positive immune regulator PATHOGENESIS RELATED 3 (OsPR3), resulting in the competitive repression of its chitinase and chitin-binding activities. Furthermore, the ospr3 osmed16 double mutants did not exhibit the lesion mimic phenotype of the spl38 mutant. Strikingly, OsMED16 exhibited an opposite function in plant defense relative to that of Arabidopsis (Arabidopsis thaliana) AtMED16, most likely because of 2 amino acid substitutions between the monocot and dicot MED16s tested. Collectively, our findings suggest that OsMED16 negatively regulates cell death and immunity in rice, probably via the OsPR3-mediated chitin signaling pathway.


Asunto(s)
Oryza , Xanthomonas , Proteínas de Plantas/metabolismo , Inmunidad Innata , Muerte Celular/genética , Apoptosis , Xanthomonas/fisiología , Enfermedades de las Plantas/genética , Regulación de la Expresión Génica de las Plantas , Resistencia a la Enfermedad/genética
13.
Plant Physiol ; 193(2): 1109-1125, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37341542

RESUMEN

ß-Galactosidases (Bgals) remove terminal ß-D-galactosyl residues from the nonreducing ends of ß-D-galactosidases and oligosaccharides. Bgals are present in bacteria, fungi, animals, and plants and have various functions. Despite the many studies on the evolution of BGALs in plants, their functions remain obscure. Here, we identified rice (Oryza sativa) ß-galactosidase9 (OsBGAL9) as a direct target of the heat stress-induced transcription factor SPOTTED-LEAF7 (OsSPL7), as demonstrated by protoplast transactivation analysis and yeast 1-hybrid and electrophoretic mobility shift assays. Knockout plants for OsBGAL9 (Osbgal9) showed short stature and growth retardation. Histochemical ß-glucuronidase (GUS) analysis of transgenic lines harboring an OsBGAL9pro:GUS reporter construct revealed that OsBGAL9 is mainly expressed in internodes at the mature stage. OsBGAL9 expression was barely detectable in seedlings under normal conditions but increased in response to biotic and abiotic stresses. Ectopic expression of OsBGAL9 enhanced resistance to the rice pathogens Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae, as well as tolerance to cold and heat stress, while Osbgal9 mutant plants showed the opposite phenotypes. OsBGAL9 localized to the cell wall, suggesting that OsBGAL9 and its plant putative orthologs likely evolved functions distinct from those of its closely related animal enzymes. Enzyme activity assays and analysis of the cell wall composition of OsBGAL9 overexpression and mutant plants indicated that OsBGAL9 has activity toward galactose residues of arabinogalactan proteins (AGPs). Our study clearly demonstrates a role for a member of the BGAL family in AGP processing during plant development and stress responses.


Asunto(s)
Oryza , Xanthomonas , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción del Choque Térmico/genética , Genes de Plantas , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo , Xanthomonas/fisiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
14.
Plant Physiol ; 192(3): 2537-2553, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36994827

RESUMEN

Rice (Oryza sativa L.) microRNA156/529-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7/14/17 (miR156/529-SPL7/14/17) modules have pleiotropic effects on many biological pathways. OsSPL7/14 can interact with DELLA protein SLENDER RICE1 (SLR1) to modulate gibberellin acid (GA) signal transduction against the bacterial pathogen Xanthomonas oryzae pv. oryzae. However, whether the miR156/529-OsSPL7/14/17 modules also regulate resistance against other pathogens is unclear. Notably, OsSPL7/14/17 functioning as transcriptional activators, their target genes, and the corresponding downstream signaling pathways remain largely unexplored. Here, we demonstrate that miR156/529 play negative roles in plant immunity and that miR156/529-regulated OsSPL7/14/17 confer broad-spectrum resistance against 2 devastating bacterial pathogens. Three OsSPL7/14/17 proteins directly bind to the promoters of rice Allene Oxide Synthase 2 (OsAOS2) and NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (OsNPR1) and activate their transcription, regulating jasmonic acid (JA) accumulation and the salicylic acid (SA) signaling pathway, respectively. Overexpression of OsAOS2 or OsNPR1 impairs the susceptibility of the osspl7/14/17 triple mutant. Exogenous application of JA enhances resistance of the osspl7/14/17 triple mutant and the miR156 overexpressing plants. In addition, genetic evidence confirms that bacterial pathogen-activated miR156/529 negatively regulate pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) responses, such as pattern recognition receptor Xa3/Xa26-initiated PTI. Our findings demonstrate that bacterial pathogens modulate miR156/529-OsSPL7/14/17 modules to suppress OsAOS2-catalyzed JA accumulation and the OsNPR1-promoted SA signaling pathway, facilitating pathogen infection. The uncovered miR156/529-OsSPL7/14/17-OsAOS2/OsNPR1 regulatory network provides a potential strategy to genetically improve rice disease resistance.


Asunto(s)
Oryza , Xanthomonas , Oryza/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Resistencia a la Enfermedad/genética , Bacterias/metabolismo , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas , Xanthomonas/fisiología
15.
Plant Cell Environ ; 47(7): 2578-2596, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38533652

RESUMEN

Enhancing carbohydrate export from source to sink tissues is considered to be a realistic approach for improving photosynthetic efficiency and crop yield. The rice sucrose transporters OsSUT1, OsSWEET11a and OsSWEET14 contribute to sucrose phloem loading and seed filling. Crucially, Xanthomonas oryzae pv. oryzae (Xoo) infection in rice enhances the expression of OsSWEET11a and OsSWEET14 genes, and causes leaf blight. Here we show that co-overexpression of OsSUT1, OsSWEET11a and OsSWEET14 in rice reduced sucrose synthesis and transport leading to lower growth and yield but reduced susceptibility to Xoo relative to controls. The immunity-related hypersensitive response (HR) was enhanced in the transformed lines as indicated by the increased expression of defence genes, higher salicylic acid content and presence of HR lesions on the leaves. The results suggest that the increased expression of OsSWEET11a and OsSWEET14 in rice is perceived as a pathogen (Xoo) attack that triggers HR and results in constitutive activation of plant defences that are related to the signalling pathways of pathogen starvation. These findings provide a mechanistic basis for the trade-off between plant growth and immunity because decreased susceptibility against Xoo compromised plant growth and yield.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Membrana , Oryza , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Plantas Modificadas Genéticamente , Ácido Salicílico , Sacarosa , Xanthomonas , Oryza/microbiología , Oryza/genética , Oryza/inmunología , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Xanthomonas/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Sacarosa/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Ácido Salicílico/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/inmunología
16.
Mol Biol Rep ; 51(1): 619, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709339

RESUMEN

BACKGROUND: Rice blast and bacterial leaf blight (BLB) are the most limiting factors for rice production in the world which cause yield losses typically ranging from 20 to 30% and can be as high as 50% in some areas of Asia especially India under severe infection conditions. METHODS AND RESULTS: An improved line of Tellahamsa, TH-625-491 having two BLB resistance genes (xa13 and Xa21) and two blast resistance genes (Pi54 and Pi1) with 95% Tellahamsa genome was used in the present study. TH-625-491 was validated for all four target genes and was used for backcrossing with Tellahamsa. Seventeen IBC1F1 plants heterozygous for all four target genes, 19 IBC1F2 plants homozygous for four, three and two gene combinations and 19 IBC1F2:3 plants also homozygous for four, three and two gene combinations were observed. Among seventeen IBC1F1 plants, IBC1F1-62 plant recorded highest recurrent parent genome (97.5%) covering 75 polymorphic markers. Out of the total of 920 IBC1F2 plants screened, 19 homozygous plants were homozygous for four, three and two target genes along with bacterial blight resistance. Background analysis was done in all 19 homozygous IBC1F2 plants possessing BLB resistance (possessing xa13, Xa21, Pi54 and Pi1 in different combinations) with five parental polymorphic SSR markers. IBC1F2-62-515 recovered 98.5% recurrent parent genome. The four, three and two gene pyramided lines of Tellahamsa exhibited varying resistance to blast. CONCLUSIONS: Results show that there might be presence of antagonistic effect between bacterial blight and blast resistance genes since the lines with Pi54 and Pi1 combination are showing better resistance than the combinations with both bacterial blight and blast resistance genes.


Asunto(s)
Resistencia a la Enfermedad , Oryza , Enfermedades de las Plantas , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Oryza/genética , Oryza/microbiología , Genes de Plantas/genética , Xanthomonas/patogenicidad , Xanthomonas/fisiología , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Fitomejoramiento/métodos
17.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33795512

RESUMEN

Bacteria have evolved a diverse array of signaling pathways that enable them to quickly respond to environmental changes. Understanding how these pathways reflect environmental conditions and produce an orchestrated response is an ongoing challenge. Herein, we present a role for collective modifications of environmental pH carried out by microbial colonies living on a surface. We show that by collectively adjusting the local pH value, Paenibacillus spp., specifically, regulate their swarming motility. Moreover, we show that such pH-dependent regulation can converge with the carbon repression pathway to down-regulate flagellin expression and inhibit swarming in the presence of glucose. Interestingly, our results demonstrate that the observed glucose-dependent swarming repression is not mediated by the glucose molecule per se, as commonly thought to occur in carbon repression pathways, but rather is governed by a decrease in pH due to glucose metabolism. In fact, modification of the environmental pH by neighboring bacterial species could override this glucose-dependent repression and induce swarming of Paenibacillus spp. away from a glucose-rich area. Our results suggest that bacteria can use local pH modulations to reflect nutrient availability and link individual bacterial physiology to macroscale collective behavior.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Interacciones Microbianas , Paenibacillus/fisiología , Flagelina/metabolismo , Concentración de Iones de Hidrógeno , Proteus mirabilis/fisiología , Xanthomonas/fisiología
18.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34215692

RESUMEN

Plant diseases are among the major causes of crop yield losses around the world. To confer disease resistance, conventional breeding relies on the deployment of single resistance (R) genes. However, this strategy has been easily overcome by constantly evolving pathogens. Disabling susceptibility (S) genes is a promising alternative to R genes in breeding programs, as it usually offers durable and broad-spectrum disease resistance. In Arabidopsis, the S gene DMR6 (AtDMR6) encodes an enzyme identified as a susceptibility factor to bacterial and oomycete pathogens. Here, we present a model-to-crop translational work in which we characterize two AtDMR6 orthologs in tomato, SlDMR6-1 and SlDMR6-2. We show that SlDMR6-1, but not SlDMR6-2, is up-regulated by pathogen infection. In agreement, Sldmr6-1 mutants display enhanced resistance against different classes of pathogens, such as bacteria, oomycete, and fungi. Notably, disease resistance correlates with increased salicylic acid (SA) levels and transcriptional activation of immune responses. Furthermore, we demonstrate that SlDMR6-1 and SlDMR6-2 display SA-5 hydroxylase activity, thus contributing to the elucidation of the enzymatic function of DMR6. We then propose that SlDMR6 duplication in tomato resulted in subsequent subfunctionalization, in which SlDMR6-2 specialized in balancing SA levels in flowers/fruits, while SlDMR6-1 conserved the ability to fine-tune SA levels during pathogen infection of the plant vegetative tissues. Overall, this work not only corroborates a mechanism underlying SA homeostasis in plants, but also presents a promising strategy for engineering broad-spectrum and durable disease resistance in crops.


Asunto(s)
Resistencia a la Enfermedad/inmunología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Homología de Secuencia de Aminoácido , Solanum lycopersicum/inmunología , Proteínas de Arabidopsis/metabolismo , Biocatálisis , Regulación de la Expresión Génica de las Plantas , Gentisatos/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Mutación/genética , Filogenia , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Ácido Salicílico/metabolismo , Transcriptoma/genética , Regulación hacia Arriba , Xanthomonas/fisiología
19.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38474170

RESUMEN

Citrus bacterial canker (CBC) is a severe bacterial infection caused by Xanthomonas citri subsp. citri (Xcc), which continues to adversely impact citrus production worldwide. Members of the GATA family are important regulators of plant development and regulate plant responses to particular stressors. This report aimed to systematically elucidate the Citrus sinensis genome to identify and annotate genes that encode GATAs and evaluate the functional importance of these CsGATAs as regulators of CBC resistance. In total, 24 CsGATAs were identified and classified into four subfamilies. Furthermore, the phylogenetic relationships, chromosomal locations, collinear relationships, gene structures, and conserved domains for each of these GATA family members were also evaluated. It was observed that Xcc infection induced some CsGATAs, among which CsGATA12 was chosen for further functional validation. CsGATA12 was found to be localized in the nucleus and was differentially upregulated in the CBC-resistant and CBC-sensitive Kumquat and Wanjincheng citrus varieties. When transiently overexpressed, CsGATA12 significantly reduced CBC resistance with a corresponding increase in abscisic acid, jasmonic acid, and antioxidant enzyme levels. These alterations were consistent with lower levels of salicylic acid, ethylene, and reactive oxygen species. Moreover, the bacteria-induced CsGATA12 gene silencing yielded the opposite phenotypic outcomes. This investigation highlights the important role of CsGATA12 in regulating CBC resistance, underscoring its potential utility as a target for breeding citrus varieties with superior phytopathogen resistance.


Asunto(s)
Infecciones Bacterianas , Citrus sinensis , Citrus , Xanthomonas , Citrus sinensis/genética , Citrus/genética , Filogenia , Xanthomonas/fisiología , Fitomejoramiento , Enfermedades de las Plantas/microbiología
20.
BMC Plant Biol ; 23(1): 52, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36694139

RESUMEN

BACKGROUND: Diseases are the major factor affecting the quality and yield of sugarcane during its growth and development. However, our knowledge about the factors regulating disease responses remain limited. The present study focuses on identifying genes regulating transcriptional mechanisms responsible for resistance to leaf scald caused by Xanthomonas albilineans in S. spontaneum and S. officinarum. RESULTS: After inoculation of the two sugarcane varieties SES208 (S. spontaneum) and LA Purple (S. officinarum) with Xanthomonas albilineans, SES208 exhibited significantly greater resistance to leaf scald caused by X. albilineans than did LA Purple. Using transcriptome analysis, we identified a total of 4323 and 1755 differentially expressed genes (DEGs) in inoculated samples of SES208 and LA Purple, respectively. Significantly, 262 DEGs were specifically identified in SES208 that were enriched for KEGG pathway terms such as plant-pathogen interaction, MAPK signaling pathway, and plant hormone signal transduction. Furthermore, we built a transcriptional regulatory co-expression network that specifically identified 16 and 25 hub genes in SES208 that were enriched for putative functions in plant-pathogen interactions, MAPK signaling, and plant hormone signal transduction. All of these essential genes might be significantly involved in resistance-regulating responses in SES208 after X. albilineans inoculation. In addition, we found allele-specific expression in SES208 that was associated with the resistance phenotype of SES208 when infected by X. albilineans. After infection with X. albilineans, a great number of DEGs associated with the KEGG pathways 'phenylpropanoid biosynthesis' and 'flavonoid biosynthesis' exhibited significant expression changes in SES208 compared to LA Purple that might contribute to superior leaf scald resistance in SES208. CONCLUSIONS: We provided the first systematical transcriptome map that the higher resistance of SES208 is associated with and elicited by the rapid activation of multiple clusters of defense response genes after infection by X. albilineans and not merely due to changes in the expression of genes generically associated with stress resistance. These results will serve as the foundation for further understanding of the molecular mechanisms of resistance against X. albilineans in S. spontaneum.


Asunto(s)
Saccharum , Xanthomonas , Saccharum/genética , Xanthomonas/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Enfermedades de las Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA