Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67.905
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(12): 2013-2015, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35688131

RESUMEN

Zinc is an essential element in living organisms, yet little is known about how cells ensure that zinc is allocated to the correct metalloproteins. Papers in Cell and Cell Reports demonstrate that the ZNG1 family of GTPases have metallochaperone functions: they directly transfer zinc to, and thereby activate, methionine aminopeptidases that are crucial for protein modification during or after translation.


Asunto(s)
Metaloproteínas , Zinc , Metaloproteínas/metabolismo , Chaperonas Moleculares/metabolismo , Zinc/metabolismo
2.
Cell ; 185(12): 2148-2163.e27, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35584702

RESUMEN

Zinc (Zn) is an essential micronutrient and cofactor for up to 10% of proteins in living organisms. During Zn limitation, specialized enzymes called metallochaperones are predicted to allocate Zn to specific metalloproteins. This function has been putatively assigned to G3E GTPase COG0523 proteins, yet no Zn metallochaperone has been experimentally identified in any organism. Here, we functionally characterize a family of COG0523 proteins that is conserved across vertebrates. We identify Zn metalloprotease methionine aminopeptidase 1 (METAP1) as a COG0523 client, leading to the redesignation of this group of COG0523 proteins as the Zn-regulated GTPase metalloprotein activator (ZNG1) family. Using biochemical, structural, genetic, and pharmacological approaches across evolutionarily divergent models, including zebrafish and mice, we demonstrate a critical role for ZNG1 proteins in regulating cellular Zn homeostasis. Collectively, these data reveal the existence of a family of Zn metallochaperones and assign ZNG1 an important role for intracellular Zn trafficking.


Asunto(s)
Metaloendopeptidasas/metabolismo , Zinc , Animales , GTP Fosfohidrolasas/metabolismo , Homeostasis , Metalochaperonas/metabolismo , Metaloproteínas/genética , Ratones , Pez Cebra/metabolismo , Zinc/metabolismo
3.
Cell ; 184(21): 5375-5390.e16, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34562363

RESUMEN

Although oxidative phosphorylation is best known for producing ATP, it also yields reactive oxygen species (ROS) as invariant byproducts. Depletion of ROS below their physiological levels, a phenomenon known as reductive stress, impedes cellular signaling and has been linked to cancer, diabetes, and cardiomyopathy. Cells alleviate reductive stress by ubiquitylating and degrading the mitochondrial gatekeeper FNIP1, yet it is unknown how the responsible E3 ligase CUL2FEM1B can bind its target based on redox state and how this is adjusted to changing cellular environments. Here, we show that CUL2FEM1B relies on zinc as a molecular glue to selectively recruit reduced FNIP1 during reductive stress. FNIP1 ubiquitylation is gated by pseudosubstrate inhibitors of the BEX family, which prevent premature FNIP1 degradation to protect cells from unwarranted ROS accumulation. FEM1B gain-of-function mutation and BEX deletion elicit similar developmental syndromes, showing that the zinc-dependent reductive stress response must be tightly regulated to maintain cellular and organismal homeostasis.


Asunto(s)
Estrés Fisiológico , Aminoácidos/química , Animales , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Femenino , Humanos , Iones , Ratones , Proteínas Mutantes/metabolismo , Mutación/genética , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/efectos de los fármacos , Relación Estructura-Actividad , Especificidad por Sustrato/efectos de los fármacos , Complejos de Ubiquitina-Proteína Ligasa/química , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitinación/efectos de los fármacos , Zinc/farmacología
4.
Cell ; 179(3): 659-670.e13, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31587896

RESUMEN

P2X receptors are trimeric, non-selective cation channels activated by extracellular ATP. The P2X7 receptor subtype is a pharmacological target because of involvement in apoptotic, inflammatory, and tumor progression pathways. It is the most structurally and functionally distinct P2X subtype, containing a unique cytoplasmic domain critical for the receptor to initiate apoptosis and not undergo desensitization. However, lack of structural information about the cytoplasmic domain has hindered understanding of the molecular mechanisms underlying these processes. We report cryoelectron microscopy structures of full-length rat P2X7 receptor in apo and ATP-bound states. These structures reveal how one cytoplasmic element, the C-cys anchor, prevents desensitization by anchoring the pore-lining helix to the membrane with palmitoyl groups. They show a second cytoplasmic element with a unique fold, the cytoplasmic ballast, which unexpectedly contains a zinc ion complex and a guanosine nucleotide binding site. Our structures provide first insights into the architecture and function of a P2X receptor cytoplasmic domain.


Asunto(s)
Lipoilación , Receptores Purinérgicos P2X7/química , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión , Microscopía por Crioelectrón , Guanosina/metabolismo , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Receptores Purinérgicos P2X7/metabolismo , Células Sf9 , Spodoptera , Xenopus , Zinc/metabolismo
5.
Annu Rev Biochem ; 87: 621-643, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29925260

RESUMEN

In response to microbial infection, the human host deploys metal-sequestering host-defense proteins, which reduce nutrient availability and thereby inhibit microbial growth and virulence. Calprotectin (CP) is an abundant antimicrobial protein released from neutrophils and epithelial cells at sites of infection. CP sequesters divalent first-row transition metal ions to limit the availability of essential metal nutrients in the extracellular space. While functional and clinical studies of CP have been pursued for decades, advances in our understanding of its biological coordination chemistry, which is central to its role in the host-microbe interaction, have been made in more recent years. In this review, we focus on the coordination chemistry of CP and highlight studies of its metal-binding properties and contributions to the metal-withholding innate immune response. Taken together, these recent studies inform our current model of how CP participates in metal homeostasis and immunity, and they provide a foundation for further investigations of a remarkable metal-chelating protein at the host-microbe interface and beyond.


Asunto(s)
Interacciones Microbiota-Huesped/inmunología , Interacciones Microbiota-Huesped/fisiología , Complejo de Antígeno L1 de Leucocito/inmunología , Complejo de Antígeno L1 de Leucocito/metabolismo , Elementos de Transición/metabolismo , Secuencia de Aminoácidos , Animales , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/inmunología , Péptidos Catiónicos Antimicrobianos/metabolismo , Humanos , Inmunidad Innata , Hierro/inmunología , Hierro/metabolismo , Complejo de Antígeno L1 de Leucocito/genética , Manganeso/inmunología , Manganeso/metabolismo , Modelos Biológicos , Modelos Moleculares , Níquel/inmunología , Níquel/metabolismo , Conformación Proteica , Homología de Secuencia de Aminoácido , Zinc/inmunología , Zinc/metabolismo
6.
Cell ; 175(6): 1520-1532.e15, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30500536

RESUMEN

N-methyl-D-aspartate receptors (NMDARs) play essential roles in memory formation, neuronal plasticity, and brain development, with their dysfunction linked to a range of disorders from ischemia to schizophrenia. Zinc and pH are physiological allosteric modulators of NMDARs, with GluN2A-containing receptors inhibited by nanomolar concentrations of divalent zinc and by excursions to low pH. Despite the widespread importance of zinc and proton modulation of NMDARs, the molecular mechanism by which these ions modulate receptor activity has proven elusive. Here, we use cryoelectron microscopy to elucidate the structure of the GluN1/GluN2A NMDAR in a large ensemble of conformations under a range of physiologically relevant zinc and proton concentrations. We show how zinc binding to the amino terminal domain elicits structural changes that are transduced though the ligand-binding domain and result in constriction of the ion channel gate.


Asunto(s)
Complejos Multiproteicos/química , Protones , Receptores de N-Metil-D-Aspartato/química , Zinc/química , Regulación Alostérica , Animales , Microscopía por Crioelectrón , Concentración de Iones de Hidrógeno , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Dominios Proteicos , Ratas , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Células Sf9 , Spodoptera , Zinc/metabolismo
7.
Cell ; 171(3): 522-539.e20, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-28942923

RESUMEN

Understanding the organizational logic of neural circuits requires deciphering the biological basis of neuronal diversity and identity, but there is no consensus on how neuron types should be defined. We analyzed single-cell transcriptomes of a set of anatomically and physiologically characterized cortical GABAergic neurons and conducted a computational genomic screen for transcriptional profiles that distinguish them from one another. We discovered that cardinal GABAergic neuron types are delineated by a transcriptional architecture that encodes their synaptic communication patterns. This architecture comprises 6 categories of ∼40 gene families, including cell-adhesion molecules, transmitter-modulator receptors, ion channels, signaling proteins, neuropeptides and vesicular release components, and transcription factors. Combinatorial expression of select members across families shapes a multi-layered molecular scaffold along the cell membrane that may customize synaptic connectivity patterns and input-output signaling properties. This molecular genetic framework of neuronal identity integrates cell phenotypes along multiple axes and provides a foundation for discovering and classifying neuron types.


Asunto(s)
Neuronas GABAérgicas/citología , Perfilación de la Expresión Génica , Análisis de la Célula Individual , Animales , Moléculas de Adhesión Celular Neuronal/metabolismo , Matriz Extracelular/metabolismo , Neuronas GABAérgicas/metabolismo , Ratones , Receptores de GABA/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Transducción de Señal , Sinapsis , Transcripción Genética , Zinc/metabolismo , Ácido gamma-Aminobutírico/metabolismo
8.
Nat Immunol ; 20(3): 350-361, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30718914

RESUMEN

Despite the known importance of zinc for human immunity, molecular insights into its roles have remained limited. Here we report a novel autosomal recessive disease characterized by absent B cells, agammaglobulinemia and early onset infections in five unrelated families. The immunodeficiency results from hypomorphic mutations of SLC39A7, which encodes the endoplasmic reticulum-to-cytoplasm zinc transporter ZIP7. Using CRISPR-Cas9 mutagenesis we have precisely modeled ZIP7 deficiency in mice. Homozygosity for a null allele caused embryonic death, but hypomorphic alleles reproduced the block in B cell development seen in patients. B cells from mutant mice exhibited a diminished concentration of cytoplasmic free zinc, increased phosphatase activity and decreased phosphorylation of signaling molecules downstream of the pre-B cell and B cell receptors. Our findings highlight a specific role for cytosolic Zn2+ in modulating B cell receptor signal strength and positive selection.


Asunto(s)
Agammaglobulinemia/inmunología , Linfocitos B/inmunología , Proteínas de Transporte de Catión/inmunología , Zinc/inmunología , Agammaglobulinemia/genética , Agammaglobulinemia/metabolismo , Animales , Linfocitos B/metabolismo , Proteínas de Transporte de Catión/deficiencia , Proteínas de Transporte de Catión/genética , Preescolar , Citosol/inmunología , Citosol/metabolismo , Modelos Animales de Enfermedad , Retículo Endoplásmico/inmunología , Retículo Endoplásmico/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Lactante , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Linaje , Zinc/metabolismo
9.
Mol Cell ; 83(2): 252-265.e13, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36630955

RESUMEN

The conserved regulon of heat shock factor 1 in budding yeast contains chaperones for general protein folding as well as zinc-finger protein Zpr1, whose essential role in archaea and eukaryotes remains unknown. Here, we show that Zpr1 depletion causes acute proteotoxicity driven by biosynthesis of misfolded eukaryotic translation elongation factor 1A (eEF1A). Prolonged Zpr1 depletion leads to eEF1A insufficiency, thereby inducing the integrated stress response and inhibiting protein synthesis. Strikingly, we show by using two distinct biochemical reconstitution approaches that Zpr1 enables eEF1A to achieve a conformational state resistant to protease digestion. Lastly, we use a ColabFold model of the Zpr1-eEF1A complex to reveal a folding mechanism mediated by the Zpr1's zinc-finger and alpha-helical hairpin structures. Our work uncovers the long-sought-after function of Zpr1 as a bespoke chaperone tailored to the biogenesis of one of the most abundant proteins in the cell.


Asunto(s)
Proteínas Portadoras , Chaperonas Moleculares , Proteínas Portadoras/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Biosíntesis de Proteínas , Zinc/metabolismo , Dedos de Zinc , Factor 1 de Elongación Peptídica/metabolismo
10.
Nature ; 631(8019): 164-169, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38926580

RESUMEN

Plants adapt to fluctuating environmental conditions by adjusting their metabolism and gene expression to maintain fitness1. In legumes, nitrogen homeostasis is maintained by balancing nitrogen acquired from soil resources with nitrogen fixation by symbiotic bacteria in root nodules2-8. Here we show that zinc, an essential plant micronutrient, acts as an intracellular second messenger that connects environmental changes to transcription factor control of metabolic activity in root nodules. We identify a transcriptional regulator, FIXATION UNDER NITRATE (FUN), which acts as a sensor, with zinc controlling the transition between an inactive filamentous megastructure and an active transcriptional regulator. Lower zinc concentrations in the nodule, which we show occur in response to higher levels of soil nitrate, dissociates the filament and activates FUN. FUN then directly targets multiple pathways to initiate breakdown of the nodule. The zinc-dependent filamentation mechanism thus establishes a concentration readout to adapt nodule function to the environmental nitrogen conditions. In a wider perspective, these results have implications for understanding the roles of metal ions in integration of environmental signals with plant development and optimizing delivery of fixed nitrogen in legume crops.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nitratos , Fijación del Nitrógeno , Nódulos de las Raíces de las Plantas , Factores de Transcripción , Zinc , Zinc/metabolismo , Factores de Transcripción/metabolismo , Nitratos/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Nitrógeno/metabolismo , Medicago truncatula/metabolismo , Medicago truncatula/genética , Simbiosis , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
11.
Mol Cell ; 82(17): 3135-3150.e9, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35914531

RESUMEN

Alternative polyadenylation (APA) enhances gene regulatory potential by increasing the diversity of mRNA transcripts. 3' UTR shortening through APA correlates with enhanced cellular proliferation and is a widespread phenomenon in tumor cells. Here, we show that the ubiquitously expressed transcription factor Sp1 binds RNA in vivo and is a common repressor of distal poly(A) site usage. RNA sequencing identified 2,344 genes (36% of the total mapped mRNA transcripts) with lengthened 3' UTRs upon Sp1 depletion. Sp1 preferentially binds the 3' UTRs of such lengthened transcripts and inhibits cleavage at distal sites by interacting with the subunits of the core cleavage and polyadenylation (CPA) machinery. The 3' UTR lengths of Sp1 target genes in breast cancer patient RNA-seq data correlate with Sp1 expression levels, implicating Sp1-mediated APA regulation in modulating tumorigenic properties. Taken together, our findings provide insights into the mechanism for dynamic APA regulation by unraveling a previously unknown function of the DNA-binding transcription factor Sp1.


Asunto(s)
Poli A , Poliadenilación , Regiones no Traducidas 3' , Humanos , Poli A/metabolismo , ARN Mensajero/metabolismo , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo , Zinc/metabolismo
12.
Cell ; 157(5): 1061-72, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24855944

RESUMEN

TRPM7 is a ubiquitous ion channel and kinase, a unique "chanzyme," required for proper early embryonic development. It conducts Zn(2+), Mg(2+), and Ca(2+) as well as monovalent cations and contains a functional serine/threonine kinase at its carboxyl terminus. Here, we show that in normal tissues and cell lines, the kinase is proteolytically cleaved from the channel domain in a cell-type-specific manner. These TRPM7 cleaved kinase fragments (M7CKs) translocate to the nucleus and bind multiple components of chromatin-remodeling complexes, including Polycomb group proteins. In the nucleus, the kinase phosphorylates specific serines/threonines of histones. M7CK-dependent phosphorylation of H3Ser10 at promoters of TRPM7-dependent genes correlates with their activity. We also demonstrate that cytosolic free [Zn(2+)] is TRPM7 dependent and regulates M7CK binding to transcription factors containing zinc-finger domains. These findings suggest that TRPM7-mediated modulation of intracellular Zn(2+) concentration couples ion-channel signaling to epigenetic chromatin covalent modifications that affect gene expression patterns. PAPERCLIP:


Asunto(s)
Canales Catiónicos TRPM/metabolismo , Animales , Línea Celular , Núcleo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Citosol/metabolismo , Expresión Génica , Histonas/metabolismo , Humanos , Ratones , Fosforilación , Proteínas Serina-Treonina Quinasas , Zinc/metabolismo , Dedos de Zinc
13.
Cell ; 156(4): 730-43, 2014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24529376

RESUMEN

Osteoarthritis (OA), primarily characterized by cartilage degeneration, is caused by an imbalance between anabolic and catabolic factors. Here, we investigated the role of zinc (Zn2+) homeostasis, Zn2+ transporters, and Zn(2+)-dependent transcription factors in OA pathogenesis. Among Zn2+ transporters, the Zn2+ importer ZIP8 was specifically upregulated in OA cartilage of humans and mice, resulting in increased levels of intracellular Zn2+ in chondrocytes. ZIP8-mediated Zn2+ influx upregulated the expression of matrix-degrading enzymes (MMP3, MMP9, MMP12, MMP13, and ADAMTS5) in chondrocytes. Ectopic expression of ZIP8 in mouse cartilage tissue caused OA cartilage destruction, whereas Zip8 knockout suppressed surgically induced OA pathogenesis, with concomitant modulation of Zn2+ influx and matrix-degrading enzymes. Furthermore, MTF1 was identified as an essential transcription factor in mediating Zn2+/ZIP8-induced catabolic factor expression, and genetic modulation of Mtf1 in mice altered OA pathogenesis. We propose that the zinc-ZIP8-MTF1 axis is an essential catabolic regulator of OA pathogenesis.


Asunto(s)
Osteoartritis/metabolismo , Osteoartritis/patología , Transducción de Señal , Proteínas ADAM/metabolismo , Anciano , Animales , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Condrocitos/metabolismo , Condrocitos/patología , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Metaloproteinasas de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Regulación hacia Arriba , Zinc/metabolismo
14.
Cell ; 157(5): 1203-15, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24855952

RESUMEN

Period (PER) proteins are essential components of the mammalian circadian clock. They form complexes with cryptochromes (CRY), which negatively regulate CLOCK/BMAL1-dependent transactivation of clock and clock-controlled genes. To define the roles of mammalian CRY/PER complexes in the circadian clock, we have determined the crystal structure of a complex comprising the photolyase homology region of mouse CRY1 (mCRY1) and a C-terminal mouse PER2 (mPER2) fragment. mPER2 winds around the helical mCRY1 domain covering the binding sites of FBXL3 and CLOCK/BMAL1, but not the FAD binding pocket. Our structure revealed an unexpected zinc ion in one interface, which stabilizes mCRY1-mPER2 interactions in vivo. We provide evidence that mCRY1/mPER2 complex formation is modulated by an interplay of zinc binding and mCRY1 disulfide bond formation, which may be influenced by the redox state of the cell. Our studies may allow for the development of circadian and metabolic modulators.


Asunto(s)
Criptocromos/química , Criptocromos/metabolismo , Cristalografía por Rayos X , Proteínas Circadianas Period/química , Proteínas Circadianas Period/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas F-Box/química , Proteínas F-Box/metabolismo , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes , Alineación de Secuencia , Zinc/metabolismo
15.
Cell ; 155(7): 1545-55, 2013 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-24315485

RESUMEN

TET proteins oxidize 5-methylcytosine (5mC) on DNA and play important roles in various biological processes. Mutations of TET2 are frequently observed in myeloid malignance. Here, we present the crystal structure of human TET2 bound to methylated DNA at 2.02 Å resolution. The structure shows that two zinc fingers bring the Cys-rich and DSBH domains together to form a compact catalytic domain. The Cys-rich domain stabilizes the DNA above the DSBH core. TET2 specifically recognizes CpG dinucleotide and shows substrate preference for 5mC in a CpG context. 5mC is inserted into the catalytic cavity with the methyl group orientated to catalytic Fe(II) for reaction. The methyl group is not involved in TET2-DNA contacts so that the catalytic cavity allows TET2 to accommodate 5mC derivatives for further oxidation. Mutations of Fe(II)/NOG-chelating, DNA-interacting, and zinc-chelating residues are frequently observed in human cancers. Our studies provide a structural basis for understanding the mechanisms of TET-mediated 5mC oxidation.


Asunto(s)
5-Metilcitosina/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/química , ADN/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Secuencia de Aminoácidos , Islas de CpG , Cristalografía por Rayos X , Metilación de ADN , Dioxigenasas , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Alineación de Secuencia , Zinc/metabolismo
16.
Nature ; 602(7897): 529-533, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35140402

RESUMEN

Type A GABA (γ-aminobutyric acid) receptors represent a diverse population in the mammalian brain, forming pentamers from combinations of α-, ß-, γ-, δ-, ε-, ρ-, θ- and π-subunits1. αß, α4ßδ, α6ßδ and α5ßγ receptors favour extrasynaptic localization, and mediate an essential persistent (tonic) inhibitory conductance in many regions of the mammalian brain1,2. Mutations of these receptors in humans are linked to epilepsy and insomnia3,4. Altered extrasynaptic receptor function is implicated in insomnia, stroke and Angelman and Fragile X syndromes1,5, and drugs targeting these receptors are used to treat postpartum depression6. Tonic GABAergic responses are moderated to avoid excessive suppression of neuronal communication, and can exhibit high sensitivity to Zn2+ blockade, in contrast to synapse-preferring α1ßγ, α2ßγ and α3ßγ receptor responses5,7-12. Here, to resolve these distinctive features, we determined structures of the predominantly extrasynaptic αß GABAA receptor class. An inhibited state bound by both the lethal paralysing agent α-cobratoxin13 and Zn2+ was used in comparisons with GABA-Zn2+ and GABA-bound structures. Zn2+ nullifies the GABA response by non-competitively plugging the extracellular end of the pore to block chloride conductance. In the absence of Zn2+, the GABA signalling response initially follows the canonical route until it reaches the pore. In contrast to synaptic GABAA receptors, expansion of the midway pore activation gate is limited and it remains closed, reflecting the intrinsic low efficacy that characterizes the extrasynaptic receptor. Overall, this study explains distinct traits adopted by αß receptors that adapt them to a role in tonic signalling.


Asunto(s)
Agonistas de Receptores de GABA-A , Antagonistas de Receptores de GABA-A , Receptores de GABA-A , Animales , Proteínas Neurotóxicas de Elápidos , Agonistas de Receptores de GABA-A/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Humanos , Mamíferos/metabolismo , Inhibición Neural/fisiología , Neuronas/metabolismo , Receptores de GABA-A/metabolismo , Sinapsis/metabolismo , Zinc , Ácido gamma-Aminobutírico/metabolismo
17.
EMBO J ; 42(2): e111185, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36416085

RESUMEN

The misfolding and mutation of Cu/Zn superoxide dismutase (SOD1) is commonly associated with amyotrophic lateral sclerosis (ALS). SOD1 can accumulate within stress granules (SGs), a type of membraneless organelle, which is believed to form via liquid-liquid phase separation (LLPS). Using wild-type, metal-deficient, and different ALS disease mutants of SOD1 and computer simulations, we report here that the absence of Zn leads to structural disorder within two loop regions of SOD1, triggering SOD1 LLPS and amyloid formation. The addition of exogenous Zn to either metal-free SOD1 or to the severe ALS mutation I113T leads to the stabilization of the loops and impairs SOD1 LLPS and aggregation. Moreover, partial Zn-mediated inhibition of LLPS was observed for another severe ALS mutant, G85R, which shows perturbed Zn-binding. By contrast, the ALS mutant G37R, which shows reduced Cu-binding, does not undergo LLPS. In addition, SOD1 condensates induced by Zn-depletion exhibit greater cellular toxicity than aggregates formed by prolonged incubation under aggregating conditions. Overall, our work establishes a role for Zn-dependent modulation of SOD1 conformation and LLPS properties that may contribute to amyloid formation.


Asunto(s)
Superóxido Dismutasa-1 , Zinc , Humanos , Esclerosis Amiotrófica Lateral/enzimología , Mutación , Superóxido Dismutasa-1/química , Superóxido Dismutasa-1/genética , Zinc/química , Pliegue de Proteína
18.
PLoS Biol ; 22(3): e3002546, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38466754

RESUMEN

Bacteria have developed fine-tuned responses to cope with potential zinc limitation. The Zur protein is a key player in coordinating this response in most species. Comparative proteomics conducted on the cyanobacterium Anabaena highlighted the more abundant proteins in a zur mutant compared to the wild type. Experimental evidence showed that the exoprotein ZepA mediates zinc uptake. Genomic context of the zepA gene and protein structure prediction provided additional insights on the regulation and putative function of ZepA homologs. Phylogenetic analysis suggests that ZepA represents a primordial system for zinc acquisition that has been conserved for billions of years in a handful of species from distant bacterial lineages. Furthermore, these results show that Zur may have been one of the first regulators of the FUR family to evolve, consistent with the scarcity of zinc in the ecosystems of the Archean eon.


Asunto(s)
Anabaena , Zinc , Zinc/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ecosistema , Filogenia , Anabaena/genética , Anabaena/metabolismo , Regulación Bacteriana de la Expresión Génica
19.
PLoS Biol ; 22(4): e3002259, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38683873

RESUMEN

Antituberculosis drugs, mostly developed over 60 years ago, combined with a poorly effective vaccine, have failed to eradicate tuberculosis. More worryingly, multiresistant strains of Mycobacterium tuberculosis (MTB) are constantly emerging. Innovative strategies are thus urgently needed to improve tuberculosis treatment. Recently, host-directed therapy has emerged as a promising strategy to be used in adjunct with existing or future antibiotics, by improving innate immunity or limiting immunopathology. Here, using high-content imaging, we identified novel 1,2,4-oxadiazole-based compounds, which allow human macrophages to control MTB replication. Genome-wide gene expression analysis revealed that these molecules induced zinc remobilization inside cells, resulting in bacterial zinc intoxication. More importantly, we also demonstrated that, upon treatment with these novel compounds, MTB became even more sensitive to antituberculosis drugs, in vitro and in vivo, in a mouse model of tuberculosis. Manipulation of heavy metal homeostasis holds thus great promise to be exploited to develop host-directed therapeutic interventions.


Asunto(s)
Antituberculosos , Modelos Animales de Enfermedad , Macrófagos , Mycobacterium tuberculosis , Oxadiazoles , Tuberculosis , Zinc , Animales , Oxadiazoles/farmacología , Humanos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Mycobacterium tuberculosis/efectos de los fármacos , Zinc/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Tuberculosis/tratamiento farmacológico , Ratones Endogámicos C57BL , Femenino , Sinergismo Farmacológico
20.
Nature ; 599(7884): 315-319, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34707296

RESUMEN

The autosomal dominant monogenetic disease neurofibromatosis type 1 (NF1) affects approximately one in 3,000 individuals and is caused by mutations in the NF1 tumour suppressor gene, leading to dysfunction in the protein neurofibromin (Nf1)1,2. As a GTPase-activating protein, a key function of Nf1 is repression of the Ras oncogene signalling cascade. We determined the human Nf1 dimer structure at an overall resolution of 3.3 Å. The cryo-electron microscopy structure reveals domain organization and structural details of the Nf1 exon 23a splicing3 isoform 2 in a closed, self-inhibited, Zn-stabilized state and an open state. In the closed conformation, HEAT/ARM core domains shield the GTPase-activating protein-related domain (GRD) so that Ras binding is sterically inhibited. In a distinctly different, open conformation of one protomer, a large-scale movement of the GRD occurs, which is necessary to access Ras, whereas Sec14-PH reorients to allow interaction with the cellular membrane4. Zn incubation of Nf1 leads to reduced Ras-GAP activity with both protomers in the self-inhibited, closed conformation stabilized by a Zn binding site between the N-HEAT/ARM domain and the GRD-Sec14-PH linker. The transition between closed, self-inhibited states of Nf1 and open states provides guidance for targeted studies deciphering the complex molecular mechanism behind the widespread neurofibromatosis syndrome and Nf1 dysfunction in carcinogenesis.


Asunto(s)
Microscopía por Crioelectrón , Neurofibromina 2/química , Neurofibromina 2/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Empalme Alternativo , Sitios de Unión , Exones , Humanos , Modelos Moleculares , Neurofibromina 1/metabolismo , Neurofibromina 2/ultraestructura , Unión Proteica , Dominios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestructura , Multimerización de Proteína , Estabilidad Proteica , Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA