Your browser doesn't support javascript.

Portal de Búsqueda de la BVS España

Información y Conocimiento para la Salud

Home > Búsqueda > ()
XML
Imprimir Exportar

Formato de exportación:

Exportar

Email
Adicionar mas contactos
| |

Alteration of taste buds in experimental cirrhosis. Is there correlation with human hypogeusia? / Alteração de paladar em um modelo experimental de cirrose. Existe correlação com hipogeusia humana?

Fernandes, Sabrina Alves; Bona, Silvia; Cerski, Carlos Thadeu Schmidt; Marroni, Norma Possa; Marroni, Claudio Augusto.
Arq. gastroenterol; 53(4): 278-284, Oct.-Dec. 2016. tab, graf
Artículo en Inglés | LILACS | ID: lil-794602
ABSTRACT Background The inherent complications of cirrhosis include protein-calorie malnutrition and micronutrient deficiencies.Changes in taste are detrimental to the nutritional status, and the mechanism to explain these changes is not well documented in the cirrhotic patients. Objective To evaluate the taste buds of cirrhotic rats. Methods Fourteen male Wistar rats were evaluated. After 16 weeks, the liver was removed to histologically diagnose cirrhosis, and blood was collected to perform liver integrity tests. The tongue was removed for histological examination and immunohistochemistry using antibodies against protein gene product PGP 9.5 and the sweet taste receptors T1R2 and T1R3. Morphological changes were determined by scanning electron microscopy. Serum zinc levels were measured. Results The cirrhotic animals, but not the control animals, exhibited zinc deficiency. In both groups, there was positive immunoreactivity for type II and III cells and T1R2 receptors. The cirrhotic animals had no immunoreactivity for T1R3 receptors. Scanning electron microscopy analysis of the cirrhotic group revealed a uniform tapering of the gustatory papillae. Conclusion In conclusion the experimental cirrhosis model mimicked the biochemical and histological parameters of human cirrhosis, therefore enabling a study of the gustatory papillae and taste buds.
Biblioteca responsable: BR1.1