Your browser doesn't support javascript.
loading
5-Aminolevulinic acid synthase: mechanism, mutations and medicine.
Shoolingin-Jordan, Peter M; Al-Daihan, Sooad; Alexeev, Dmitriy; Baxter, Robert L; Bottomley, Sylvia S; Kahari, I Donald; Roy, Ipsita; Sarwar, Muhammad; Sawyer, Lindsay; Wang, Shu-Fen.
Afiliación
  • Shoolingin-Jordan PM; Biochemistry and Molecular Biology, School of Biological Sciences, The University of Southampton, Southampton, SO16 7PX, UK. pmsj@soton.ac.uk
Biochim Biophys Acta ; 1647(1-2): 361-6, 2003 Apr 11.
Article en En | MEDLINE | ID: mdl-12686158
ABSTRACT
5-Aminolevulinic acid synthase (ALAS), the first enzyme of the heme biosynthesis pathway, catalyses the pyridoxal 5'-phosphate-dependent condensation between glycine and succinyl-CoA to yield 5-aminolevulinic acid (5-amino-4-oxopentanoate). A three-dimensional structural model of Rhodobacter spheroides ALAS has been constructed and used to identify amino acid residues at the active site that are likely to be important for the recognition of glycine, the only amino acid substrate. Several residues have been investigated by site-directed mutagenesis and enzyme variants have been generated that are able to use alanine, serine or threonine. A three-dimensional structure model of 5-aminolevulinic acid synthase from human erythrocytes (ALAS 2) has also been constructed and used to map a range of naturally occurring human mutants that give rise to X-linked sideroblastic anemia. A number of these anemias respond favourably to vitamin B(6) (pyridoxine) therapy, whereas others are either partially responsive or completely refractory. Detailed investigations with selected human mutants have highlighted the importance of arginine-517 that is implicated in glycine carboxyl group binding.
Asunto(s)
Buscar en Google
Bases de datos: MEDLINE Asunto principal: 5-Aminolevulinato Sintetasa Límite: Humans Idioma: En Revista: Biochim Biophys Acta Año: 2003 Tipo del documento: Article País de afiliación: Reino Unido
Buscar en Google
Bases de datos: MEDLINE Asunto principal: 5-Aminolevulinato Sintetasa Límite: Humans Idioma: En Revista: Biochim Biophys Acta Año: 2003 Tipo del documento: Article País de afiliación: Reino Unido