Identification and characterization of insulin-like growth factor receptors on adult rat cardiac myocytes: linkage to inositol 1,4,5-trisphosphate formation.
Endocrinology
; 130(1): 145-51, 1992 Jan.
Article
en En
| MEDLINE
| ID: mdl-1309323
Cultured cardiac myocytes from adult Sprague-Dawley rats express both insulin-like growth factor-I (IGF-I) receptors and insulin-like growth factor-II/mannose 6-phosphate (IGF-II/Man6P) receptors and respond to IGF-I with a dose-dependent accumulation of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and inositol 1,4-bisphosphate [Ins(1,4)P2]. Specific binding of [125I]IGF-I to isolated membranes from cultured cardiac myocytes amounted to 1-1.2%. Binding of [125I]IGF-I was inhibited by unlabeled IGF-I at nanomolar concentrations and insulin at much higher concentrations. These data suggest that IGF-I binds to its own receptor on rat cardiac myocytes. Competitive binding studies using isolated membranes from cardiac myocytes and [125I]IGF-II showed 2-4% specific binding. Binding of [125I]IGF-II was inhibited by IGF-II and much less potently by IGF-I and insulin. Immunoglobulin G (IgG) 3637 (an IgG directed against the IGF-II/Man6P receptor) partially inhibited binding of [125I]IGF-II whereas nonimmune IgG did not. Affinity cross-linking studies with [125I]IGF-II and cardiac myocyte membranes and subsequent analysis of the ligand-receptor complex using SDS-PAGE and autoradiography showed a radiolabeled band of approximately 250 kilodalton (kDa). The formation of the [125I]IGF-II-receptor complex was inhibited by incubation with IGF-II and IgG 3637 but not by insulin or nonimmune IgG. Western blotting of protein extracts from cultured cardiac myocytes was performed using IgG 3637 and an immunoperoxidase technique for the visualization of the IGF-II/Man6P receptor protein. A specific band at 220 kDa under nonreducing conditions was detected on the blots, providing further evidence for the expression of the IGF-II/Man6P receptor by cardiac myocytes. The effect of IGFs on the accumulation of inositol phosphates was measured by HPLC analysis of perchloric acid extracts from myo-[3H]inositol-labeled cultured cardiac myocytes. IGF-I (50 ng/ml) stimulated the accumulation both of Ins(1,4,5)P3 and Ins(1,4)P2 after 30 sec by 43% and 63%. IGF-II (up to 500 ng/ml) had no significant effect on inositol phosphate accumulation under the same conditions. However, in the presence of millimolar concentrations of Man6P, IGF-II (500 ng/ml) also increased Ins(1,4,5)P3 accumulation by 59%. We conclude that cardiac myocytes from adult rats express IGF receptors and respond to IGFs with the accumulation of Ins(1,4,5)P3 and Ins(1,4)P2. This effect seems to be mediated by an IGF-I receptor-specific pathway.
Buscar en Google
Bases de datos:
MEDLINE
Asunto principal:
Factor I del Crecimiento Similar a la Insulina
/
Factor II del Crecimiento Similar a la Insulina
/
Inositol 1,4,5-Trifosfato
/
Receptores de Superficie Celular
/
Miocardio
Tipo de estudio:
Diagnostic_studies
/
Prognostic_studies
Límite:
Animals
Idioma:
En
Revista:
Endocrinology
Año:
1992
Tipo del documento:
Article
País de afiliación:
Alemania