Development of new EBV-based vectors for stable expression of small interfering RNA to mimick human syndromes: application to NER gene silencing.
Mol Cancer Res
; 3(9): 519-29, 2005 Sep.
Article
en En
| MEDLINE
| ID: mdl-16179499
We developed and characterized replicative small interfering RNA (siRNA) vectors for efficient, specific, and long-term gene silencing in human cells. We created stable XPA(KD) and XPC(KD) (knockdown) syngeneic cell lines to mimic human cancer-prone syndromes. We also silenced (HSA)KIN17. Several clones displaying undetectable protein levels of XPA, XPC, or (HSA)kin17 were grown for more than 300 days. This stability of gene silencing over several months of culture allows us to assess the specific involvement of these proteins in UVC sensitivity in syngeneic cells. Unlike XPA, (HSA)KIN17, and XPC gene silencing dramatically impeded HeLa cell growth for several weeks after transfection. As expected, XPA(KD) and XPC(KD) HeLa cells were highly UVC sensitive. They presented an impaired unscheduled DNA synthesis after UVC irradiation. Interestingly, XPC(KD) HeLa clones were more sensitive to UVC than their XPA(KD) or KIN17(KD) counterparts. Hygromycin B withdrawal led to the total disappearance of EBV vectors and the resumption of normal XPA or XPC protein levels. Whereas reverted XPA(KD) cells recovered a normal UVC sensitivity, XPC(KD) cells remained highly sensitive, suggestive of irreversible damage following long-term XPC silencing. Our results show that in HeLa cells, (HSA)kin17 participates indirectly in early events following UVC irradiation, and XPC deficiency strongly affects cell physiology and contributes to UVC sensitivity to a greater extent than does XPA. EBV-based siRNA vectors improve the interest of siRNA by permitting long-term gene silencing without the safety concerns inherent in viral-based siRNA vehicles.
Buscar en Google
Bases de datos:
MEDLINE
Asunto principal:
Rayos Ultravioleta
/
Herpesvirus Humano 4
/
Silenciador del Gen
/
ARN Interferente Pequeño
/
Reparación del ADN
/
Vectores Genéticos
Límite:
Humans
Idioma:
En
Revista:
Mol Cancer Res
Asunto de la revista:
BIOLOGIA MOLECULAR
/
NEOPLASIAS
Año:
2005
Tipo del documento:
Article
País de afiliación:
Francia