Your browser doesn't support javascript.
loading
5-Methyl-2-[3-(4-phenylthiazol-2-yl)triazenyl]benzenesulfonic acid as a chromogenic reagent of N-cetylpyridinium chloride Synthesis, mechanism and analytical application.
He, Xiao-Ling; Wang, Yong-Qiu; Ling, Ke-Qing.
Afiliación
  • He XL; Department of Chemistry, Huaibei Coal Industry Teacher's College, Huaibei, Anhui 235000, China. hbhxl111@hotmail.com
Talanta ; 74(4): 821-30, 2008 Jan 15.
Article en En | MEDLINE | ID: mdl-18371715
ABSTRACT
Despite that triazene reagents have been widely used for spectrophotometric determinations of cationic surfactants, the mechanism underlying such applications has yet to be studied. We report the synthesis of a new triazene reagent 5-methyl-2-[3-(4-phenylthiazol-2-yl)triazenyl]benzenesulfonic acid (MPTTBSA) and its interaction with N-cetylpyridinium chloride (CPC). The reagent was synthesized by coupling 4-methyl-2-sulfobenzenediazonium salt with 2-amino-4-phenylthiazole. Spectral evidence suggests that the neutral reagent (H(2)R) exists in a triazenium sulfonate zwitterion form. Two ionizations were detected at weak acidic (H(2)R/HR(-), pK(a1) 2.71+/-0.20) and alkaline pH (HR(-)/R(2-), pK(a2) ca. 13.5), respectively. In the presence of 3.5 equivalents of CPC, a 2.71 unit decrease in pK(a1) and a 3.0 unit decrease in pK(a2) were observed. While the optical properties of H(2)R are essentially unaffected, CPC causes a 53nm red shift and a 31nm red shift in maximum absorption wavelengths (lambda(max)), and a 24% increase and a 29% increase in extinction coefficients (epsilon) of HR(-) and R(2-), respectively. These data suggest that CPC forms ion associates with HR(-) and R(2-), but its interaction with H(2)R is weak. Associations of CPC with HR(-) and R(2-) both follow a 31 stoichiometry, and the apparent stability constants of the two associates were estimated as 6.02x10(18) and 2.42x10(22)M(-3), respectively. Consistent with their high stability constants, the two ion associates did not show any changes in optical properties under submicellar and micellar conditions. The strict 31 association stoichiometry was interpreted in terms of electrostatic-induced, topology-defined pi-stacking and hydrophobic interactions, which not only change the optical properties of the reagent anions, but also provide the driving force to shift the two ionization equilibria to the right and cause the decreases in pK(a). Compared to the first ionization, perturbation of the second ionization by CPC provides a color reaction that is more sensitive and has a better color contrast, which was used to develop a new protocol for spectrophotometric determination of CPC. This is the first mechanistic study on the interaction between a triazene reagent and a cationic surfactant.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Talanta Año: 2008 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Talanta Año: 2008 Tipo del documento: Article País de afiliación: China