Your browser doesn't support javascript.
loading
Glaucoma-associated WDR36 variants encode functional defects in a yeast model system.
Footz, Tim K; Johnson, Jill L; Dubois, Stéphane; Boivin, Nicolas; Raymond, Vincent; Walter, Michael A.
Afiliación
  • Footz TK; Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
Hum Mol Genet ; 18(7): 1276-87, 2009 Apr 01.
Article en En | MEDLINE | ID: mdl-19150991
Primary open-angle glaucoma (POAG) is a leading cause of blindness worldwide. POAG is associated with a characteristic progression of changes to ocular morphology and degeneration at the optic nerve head with the loss of visual fields. Physical mapping efforts identified genomic loci in which to search for causative POAG gene mutations. WDR36, at locus GLC1G, was initially identified as a gene with a low frequency of non-synonymous sequence variations that were exclusive to adult-onset POAG patients. It has since been shown that rare WDR36 sequence variants are also present in the normal population at similarly low frequencies. The lack of a consistent genotype:phenotype correlation prompted us to investigate the functional consequences of WDR36 sequence variations. WDR36 is involved in rRNA processing, a critical step in ribosome biogenesis, and is very similar to yeast Utp21p which is a member of the small subunit (SSU) processome complex responsible for maturation of 18S rRNA. We, therefore, developed a yeast model system to test the functional and phenotypic consequences of POAG-associated sequence variants introduced into UTP21. Alone, the POAG variants did not produce any significant defects in cell viability or rRNA processing. However, when combined with disruption of STI1 (which synthetically interacts with UTP21), 5 of the 11 tested variants had increased or decreased cell viability which corresponded to reduced or elevated levels of pre-rRNA, respectively. These results demonstrate that, in the correct genetic background, WDR36 sequence variants can lead to an altered cellular phenotype, supporting the theory that WDR36 participates in polygenic forms of glaucoma.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Glaucoma de Ángulo Abierto / Proteínas Mutantes / Proteínas del Ojo / Modelos Biológicos / Mutación Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: Hum Mol Genet Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA MEDICA Año: 2009 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Glaucoma de Ángulo Abierto / Proteínas Mutantes / Proteínas del Ojo / Modelos Biológicos / Mutación Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: Hum Mol Genet Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA MEDICA Año: 2009 Tipo del documento: Article País de afiliación: Canadá