Semi-automatic level set segmentation of liver tumors combining a spiral-scanning technique with supervised fuzzy pixel classification.
Med Image Anal
; 14(1): 13-20, 2010 Feb.
Article
en En
| MEDLINE
| ID: mdl-19828356
In this paper, a specific method is presented to facilitate the semi-automatic segmentation of liver tumors and liver metastases in CT images. Accurate and reliable segmentation of tumors is essential for the follow-up of cancer treatment. The core of the algorithm is a level set method. The initialization is generated by a spiral-scanning technique based on dynamic programming. The level set evolves according to a speed image that is the result of a statistical pixel classification algorithm with supervised learning. This method is tested on CT images of the abdomen and compared with manual delineations of liver tumors. The described method outperformed the semi-automatic methods of the other participants of the "3D Liver Tumor Segmentation Challenge 2008". Evaluating the algorithm on the provided test data leads to an average overlap error of 32.6% and an average volume difference of 17.9%. The average, the RMS and the maximum surface distance are 2.0, 2.6 and 10.1 mm, respectively.
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Reconocimiento de Normas Patrones Automatizadas
/
Interpretación de Imagen Radiográfica Asistida por Computador
/
Tomografía Computarizada por Rayos X
/
Lógica Difusa
/
Imagenología Tridimensional
/
Tomografía Computarizada Espiral
/
Neoplasias Hepáticas
Tipo de estudio:
Diagnostic_studies
/
Evaluation_studies
/
Guideline
Límite:
Humans
Idioma:
En
Revista:
Med Image Anal
Asunto de la revista:
DIAGNOSTICO POR IMAGEM
Año:
2010
Tipo del documento:
Article
País de afiliación:
Bélgica