Your browser doesn't support javascript.
loading
Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction.
Youn, J H; Gulve, E A; Holloszy, J O.
Afiliación
  • Youn JH; Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.
Am J Physiol ; 260(3 Pt 1): C555-61, 1991 Mar.
Article en En | MEDLINE | ID: mdl-2003578
In this study we investigated the possibility that an increase in cytoplasmic Ca2+ concentration that is too low to cause muscle contraction can induce an increase in glucose transport activity in skeletal muscle. The compound N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), which induces Ca2+ release from the sarcoplasmic reticulum (SR), caused a dose-dependent increase in tension in rat epitrochlearis muscles at concentrations more than approximately 200 microM. Although 100 microM W-7 did not increase muscle tension, it accelerated loss of preloaded 45Ca2+. Glucose transport activity, measured with the nonmetabolizable glucose analogue 3-O-methylglucose, increased sixfold in muscles treated for 100 min with 50 microM W-7 (P less than 0.001) and eightfold in response to 100 microM W-7 (P less than 0.001). The increase in glucose transport activity was completely blocked with 25 microM cytochalasin B. There was no decrease in ATP or creatine phosphate concentrations ([approximately P]) in muscles incubated with 50 microM W-7. Dantrolene (25 microM), which blocks Ca2+ release from the SR, blocked the effects of W-7 both on 45Ca2+ release and on glucose transport activity. 9-Aminoacridine, another inhibitor of Ca2+ release from the SR, also blocked the stimulation of hexose transport by W-7. Caffeine, a compound structurally unrelated to W-7 that also releases Ca2+ from the SR, also increased glucose transport activity. Incubation of muscles with 3 mM caffeine for 30 min, which did not cause contraction or lower [approximately P], induced a threefold increase in 3-O-methylglucose transport (P less than 0.001). These results provide evidence suggesting that an increase in cytoplasmic Ca2+ too low to cause contraction or [approximately P] depletion can bring about an increase in glucose transport activity in skeletal muscle.
Asunto(s)
Buscar en Google
Bases de datos: MEDLINE Asunto principal: Calcio / Metilglucósidos / Contracción Muscular / Músculos Límite: Animals Idioma: En Revista: Am J Physiol Año: 1991 Tipo del documento: Article
Buscar en Google
Bases de datos: MEDLINE Asunto principal: Calcio / Metilglucósidos / Contracción Muscular / Músculos Límite: Animals Idioma: En Revista: Am J Physiol Año: 1991 Tipo del documento: Article