Your browser doesn't support javascript.
loading
Rapid cell population identification in flow cytometry data.
Aghaeepour, Nima; Nikolic, Radina; Hoos, Holger H; Brinkman, Ryan R.
Afiliación
  • Aghaeepour N; Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada.
Cytometry A ; 79(1): 6-13, 2011 Jan.
Article en En | MEDLINE | ID: mdl-21182178
We have developed flowMeans, a time-efficient and accurate method for automated identification of cell populations in flow cytometry (FCM) data based on K-means clustering. Unlike traditional K-means, flowMeans can identify concave cell populations by modelling a single population with multiple clusters. flowMeans uses a change point detection algorithm to determine the number of sub-populations, enabling the method to be used in high throughput FCM data analysis pipelines. Our approach compares favorably to manual analysis by human experts and current state-of-the-art automated gating algorithms. flowMeans is freely available as an open source R package through Bioconductor.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Citometría de Flujo Tipo de estudio: Diagnostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Cytometry A Año: 2011 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Citometría de Flujo Tipo de estudio: Diagnostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Cytometry A Año: 2011 Tipo del documento: Article País de afiliación: Canadá