Your browser doesn't support javascript.
loading
Short range order at the amorphous TiO(2)-water interface probed by silicic acid adsorption and interfacial oligomerization: an ATR-IR and 29Si MAS-NMR study.
Swedlund, Peter J; Song, Yantao; Zujovic, Zoran D; Nieuwoudt, Michél K; Hermann, Andreas; McIntosh, Grant J.
Afiliación
  • Swedlund PJ; Department of Chemistry, University of Auckland, Private Bag 92019, Auckland, New Zealand. p.swedlund@auckland.ac.nz
J Colloid Interface Sci ; 368(1): 447-55, 2012 Feb 15.
Article en En | MEDLINE | ID: mdl-22153337
Adsorption and oligomerization of H(4)SiO(4) at the amorphous TiO(2)-aqueous interface were studied using in situ Attenuated Total Reflectance Infrared (ATR-IR) and ex situ solid state (29)Si nuclear magnetic resonance (NMR). The ATR-IR spectra indicate that a monomeric silicate species is present at low silicate surface concentration (Γ(Si)). Above a threshold Γ(Si) linear silicate oligomers are formed and these oligomers dominate the surface at high Γ(Si). Interestingly the ATR-IR spectra of H(4)SiO(4) on the TiO(2) surface are very similar to those previously observed on the poorly ordered iron oxide phase ferrihydrite. The (29)Si NMR spectrum of silicate on the TiO(2) surface shows the presence of Si in three states with chemical shifts corresponding to isolated monomers (Q(0)), the ends of linear oligomers (Q(1)) and the middle of linear oligomers (Q(2)). The ratio of the area of the Q(1) and Q(2) peaks was ≈2:1 which is consistent with the proposed formation of linear silicate trimers by insertion of a solution H(4)SiO(4) between adjacent suitably orientated adsorbed silicate monomers. A structural interpretation indicates that the observed interfacial silicate oligomerization behavior is a general phenomenon whereby bidentate silicate monomers on oxide surfaces are disposed towards forming linear oligomers by condensation reactions involving their two terminal Si-OH groups. The high surface curvature of nanometer sized spheres inhibits the formation of interfacial silicates with a higher degree of polymerization.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2012 Tipo del documento: Article País de afiliación: Nueva Zelanda

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2012 Tipo del documento: Article País de afiliación: Nueva Zelanda