Your browser doesn't support javascript.
loading
Identification of IL-34 in teleost fish: differential expression of rainbow trout IL-34, MCSF1 and MCSF2, ligands of the MCSF receptor.
Wang, Tiehui; Kono, Tomoya; Monte, Milena M; Kuse, Haruka; Costa, Maria M; Korenaga, Hiroki; Maehr, Tanja; Husain, Mansourah; Sakai, Masahiro; Secombes, Christopher J.
Afiliación
  • Wang T; Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK. t.h.wang@abdn.ac.uk
Mol Immunol ; 53(4): 398-409, 2013 Apr.
Article en En | MEDLINE | ID: mdl-23099477
The mononuclear phagocyte system is composed of monocytes, macrophages and dendritic cells and has crucial roles in inflammation, autoimmunity, infection, cancer, organ transplantation and in maintaining organismal homeostasis. Interleukin-34 (IL-34) and macrophage colony stimulating factor (MCSF), both signalling through the MCSF receptor, regulate the mononuclear phagocyte system. A single IL-34 and MCSF gene are present in tetrapods. Two types of MCSF exist in teleost fish which is resulted from teleost-wide whole genome duplication. In this report, we first identified and sequence analysed six IL-34 genes in five teleost fish, rainbow trout, fugu, Atlantic salmon, catfish and zebrafish. The fish IL-34 molecules had a higher identity within fish group but low identities to IL-34s from birds (27.2-33.8%) and mammals (22.2-31.4%). However, they grouped with tetrapod IL-34 molecules in phylogenetic tree analysis, had a similar 7 exon/6 intron gene organisation, and genes in the IL-34 loci were syntenically conserved. In addition, the regions of the four main helices, along with a critical N-glycosylation site were well conserved. Taken together these data suggest that the teleost IL-34 genes described in this report are orthologues of tetrapod IL-34. Comparative expression study of the three trout MCSFR ligands revealed that IL-34, MCSF1 and MCSF2 are differentially expressed in tissues and cell lines. The expression of MCSF1 and MCSF2 showed great variance in different tissues and cell lines, suggesting a role in the differentiation and maintenance of specific macrophage lineages in specific locations. The relatively high levels of IL-34 expression across different tissues suggests a homeostatic role of IL-34 for the macrophage lineage in fish. One striking observation in the present study was the lack of induction of MCSF1 and MCSF2 expression but the quick induction of IL-34 expression by PAMPs and inflammatory cytokines in cell lines and primary head kidney macrophages in rainbow trout. In a parasitic proliferative kidney disease (PKD) model, the expression of IL-34 but not the dominant MCSF2 was affected by PKD, suggesting an involvement of macrophage function in this disease model. Thus IL-34 expression is sensitive to inflammatory stimuli and may regulate macrophage biology once up-regulated.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Factor Estimulante de Colonias de Macrófagos / Interleucinas / Oncorhynchus mykiss / Macrófagos Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Mol Immunol Año: 2013 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Factor Estimulante de Colonias de Macrófagos / Interleucinas / Oncorhynchus mykiss / Macrófagos Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Mol Immunol Año: 2013 Tipo del documento: Article