Your browser doesn't support javascript.
loading
Identifying patients with diabetes and the earliest date of diagnosis in real time: an electronic health record case-finding algorithm.
Makam, Anil N; Nguyen, Oanh K; Moore, Billy; Ma, Ying; Amarasingham, Ruben.
Afiliación
  • Makam AN; Division of General Internal Medicine, University of California San Francisco, Box 1211, Laurel Heights Campus, Room 383, 3333 California St., San Francisco, CA 94143, USA. anil.makam@utsouthwestern.edu
BMC Med Inform Decis Mak ; 13: 81, 2013 Aug 01.
Article en En | MEDLINE | ID: mdl-23915139
BACKGROUND: Effective population management of patients with diabetes requires timely recognition. Current case-finding algorithms can accurately detect patients with diabetes, but lack real-time identification. We sought to develop and validate an automated, real-time diabetes case-finding algorithm to identify patients with diabetes at the earliest possible date. METHODS: The source population included 160,872 unique patients from a large public hospital system between January 2009 and April 2011. A diabetes case-finding algorithm was iteratively derived using chart review and subsequently validated (n = 343) in a stratified random sample of patients, using data extracted from the electronic health records (EHR). A point-based algorithm using encounter diagnoses, clinical history, pharmacy data, and laboratory results was used to identify diabetes cases. The date when accumulated points reached a specified threshold equated to the diagnosis date. Physician chart review served as the gold standard. RESULTS: The electronic model had a sensitivity of 97%, specificity of 90%, positive predictive value of 90%, and negative predictive value of 96% for the identification of patients with diabetes. The kappa score for agreement between the model and physician for the diagnosis date allowing for a 3-month delay was 0.97, where 78.4% of cases had exact agreement on the precise date. CONCLUSIONS: A diabetes case-finding algorithm using data exclusively extracted from a comprehensive EHR can accurately identify patients with diabetes at the earliest possible date within a healthcare system. The real-time capability may enable proactive disease management.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Diagnóstico Precoz / Diabetes Mellitus / Registros Electrónicos de Salud Tipo de estudio: Diagnostic_studies / Prognostic_studies / Screening_studies Límite: Adult / Aged / Female / Humans / Male / Middle aged País/Región como asunto: America do norte Idioma: En Revista: BMC Med Inform Decis Mak Asunto de la revista: INFORMATICA MEDICA Año: 2013 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Diagnóstico Precoz / Diabetes Mellitus / Registros Electrónicos de Salud Tipo de estudio: Diagnostic_studies / Prognostic_studies / Screening_studies Límite: Adult / Aged / Female / Humans / Male / Middle aged País/Región como asunto: America do norte Idioma: En Revista: BMC Med Inform Decis Mak Asunto de la revista: INFORMATICA MEDICA Año: 2013 Tipo del documento: Article País de afiliación: Estados Unidos