Heat-shock protein dysregulation is associated with functional and pathological TDP-43 aggregation.
Nat Commun
; 4: 2757, 2013.
Article
en En
| MEDLINE
| ID: mdl-24220679
Conformational disorders are involved in various neurodegenerative diseases. Reactive oxygen species (ROS) are the major contributors to neurodegenerative disease; however, ROS that affect the structural changes in misfolded disease proteins have yet to be well characterized. Here we demonstrate that the intrinsic propensity of TDP-43 to aggregate drives the assembly of TDP-43-positive stress granules and soluble toxic TDP-43 oligomers in response to a ROS insult via a disulfide crosslinking-independent mechanism. Notably, ROS-induced TDP-43 protein assembly correlates with the dynamics of certain TDP-43-associated chaperones. The heat-shock protein (HSP)-90 inhibitor 17-AAG prevents ROS-induced TDP-43 aggregation, alters the type of TDP-43 multimers and reduces the severity of pathological TDP-43 inclusions. In summary, our study suggests that a common mechanism could be involved in the pathogenesis of conformational diseases that result from HSP dysregulation.
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Proteínas de Unión al ADN
/
Proteínas de Choque Térmico
Tipo de estudio:
Risk_factors_studies
Límite:
Humans
Idioma:
En
Revista:
Nat Commun
Asunto de la revista:
BIOLOGIA
/
CIENCIA
Año:
2013
Tipo del documento:
Article
País de afiliación:
Taiwán