Your browser doesn't support javascript.
loading
Constant pH molecular dynamics of proteins in explicit solvent with proton tautomerism.
Goh, Garrett B; Hulbert, Benjamin S; Zhou, Huiqing; Brooks, Charles L.
Afiliación
  • Goh GB; Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109.
Proteins ; 82(7): 1319-31, 2014 Jul.
Article en En | MEDLINE | ID: mdl-24375620
ABSTRACT
pH is a ubiquitous regulator of biological activity, including protein-folding, protein-protein interactions, and enzymatic activity. Existing constant pH molecular dynamics (CPHMD) models that were developed to address questions related to the pH-dependent properties of proteins are largely based on implicit solvent models. However, implicit solvent models are known to underestimate the desolvation energy of buried charged residues, increasing the error associated with predictions that involve internal ionizable residue that are important in processes like hydrogen transport and electron transfer. Furthermore, discrete water and ions cannot be modeled in implicit solvent, which are important in systems like membrane proteins and ion channels. We report on an explicit solvent constant pH molecular dynamics framework based on multi-site λ-dynamics (CPHMD(MSλD)). In the CPHMD(MSλD) framework, we performed seamless alchemical transitions between protonation and tautomeric states using multi-site λ-dynamics, and designed novel biasing potentials to ensure that the physical end-states are predominantly sampled. We show that explicit solvent CPHMD(MSλD) simulations model realistic pH-dependent properties of proteins such as the Hen-Egg White Lysozyme (HEWL), binding domain of 2-oxoglutarate dehydrogenase (BBL) and N-terminal domain of ribosomal protein L9 (NTL9), and the pKa predictions are in excellent agreement with experimental values, with a RMSE ranging from 0.72 to 0.84 pKa units. With the recent development of the explicit solvent CPHMD(MSλD) framework for nucleic acids, accurate modeling of pH-dependent properties of both major class of biomolecules-proteins and nucleic acids is now possible.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Proteínas / Simulación de Dinámica Molecular Tipo de estudio: Prognostic_studies Idioma: En Revista: Proteins Asunto de la revista: BIOQUIMICA Año: 2014 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Proteínas / Simulación de Dinámica Molecular Tipo de estudio: Prognostic_studies Idioma: En Revista: Proteins Asunto de la revista: BIOQUIMICA Año: 2014 Tipo del documento: Article