Your browser doesn't support javascript.
loading
Heritability of radiation response in lung cancer families.
Rosenberger, Albert; Rössler, Ute; Hornhardt, Sabine; Sauter, Wiebke; Bickeböller, Heike; Wichmann, H-Erich; Gomolka, Maria.
Afiliación
  • Rosenberger A; Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Humboldtallee 32, 37073 Göttingen, Germany. arosenb@gwdg.de.
  • Rössler U; Department of Radiation Protections and Health, Federal Office for Radiation Protection, Ingolstaedter Landstr.1, 85764 Oberschleissheim, Germany. uroessler@bfs.de.
  • Hornhardt S; Department of Radiation Protections and Health, Federal Office for Radiation Protection, Ingolstaedter Landstr.1, 85764 Oberschleissheim, Germany. shornhardt@bfs.de.
  • Sauter W; Department of Radiation Protections and Health, Federal Office for Radiation Protection, Ingolstaedter Landstr.1, 85764 Oberschleissheim, Germany. wiebke.sauter@gmx.de.
  • Bickeböller H; Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Humboldtallee 32, 37073 Göttingen, Germany. hbickeb@gwdg.de.
  • Wichmann HE; Institute of Epidemiology, Helmholtz Center Munich, 85764 Munich, Germany. wichmann@helmholtz-muenchen.de.
  • Gomolka M; Department of Radiation Protections and Health, Federal Office for Radiation Protection, Ingolstaedter Landstr.1, 85764 Oberschleissheim, Germany. mgomolka@bfs.de.
Genes (Basel) ; 3(2): 248-60, 2012 Mar 29.
Article en En | MEDLINE | ID: mdl-24704916
ABSTRACT
Radiation sensitivity is assumed to be a cancer susceptibility factor due to impaired DNA damage signalling and repair. Relevant genetic factors may also determine the observed familial aggregation of early onset lung cancer. We investigated the heritability of radiation sensitivity in families of 177 Caucasian cases of early onset lung cancer. In total 798 individuals were characterized for their radiation-induced DNA damage response. DNA damage analysis was performed by alkaline comet assay before and after in vitro irradiation of isolated lymphocytes. The cells were exposed to a dose of 4 Gy and allowed to repair induced DNA-damage up to 60 minutes. The primary outcome parameter Olive Tail Moment was the basis for heritability estimates. Heritability was highest for basal damage (without irradiation) 70% (95%-CI 51%-88%) and initial damage (directly after irradiation) 65% (95%-CI 47%-83%) and decreased to 20%-48% for the residual damage after different repair times. Hence our study supports the hypothesis that genomic instability represented by the basal DNA damage as well as radiation induced and repaired damage is highly heritable. Genes influencing genome instability and DNA repair are therefore of major interest for the etiology of lung cancer in the young. The comet assay represents a proper tool to investigate heritability of the radiation sensitive phenotype. Our results are in good agreement with other mutagen sensitivity assays.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Genes (Basel) Año: 2012 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Genes (Basel) Año: 2012 Tipo del documento: Article País de afiliación: Alemania