All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins.
Nat Methods
; 11(8): 825-33, 2014 Aug.
Article
en En
| MEDLINE
| ID: mdl-24952910
All-optical electrophysiology-spatially resolved simultaneous optical perturbation and measurement of membrane voltage-would open new vistas in neuroscience research. We evolved two archaerhodopsin-based voltage indicators, QuasAr1 and QuasAr2, which show improved brightness and voltage sensitivity, have microsecond response times and produce no photocurrent. We engineered a channelrhodopsin actuator, CheRiff, which shows high light sensitivity and rapid kinetics and is spectrally orthogonal to the QuasArs. A coexpression vector, Optopatch, enabled cross-talk-free genetically targeted all-optical electrophysiology. In cultured rat neurons, we combined Optopatch with patterned optical excitation to probe back-propagating action potentials (APs) in dendritic spines, synaptic transmission, subcellular microsecond-timescale details of AP propagation, and simultaneous firing of many neurons in a network. Optopatch measurements revealed homeostatic tuning of intrinsic excitability in human stem cell-derived neurons. In rat brain slices, Optopatch induced and reported APs and subthreshold events with high signal-to-noise ratios. The Optopatch platform enables high-throughput, spatially resolved electrophysiology without the use of conventional electrodes.
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Rodopsina
/
Mamíferos
/
Neuronas
Límite:
Animals
Idioma:
En
Revista:
Nat Methods
Asunto de la revista:
TECNICAS E PROCEDIMENTOS DE LABORATORIO
Año:
2014
Tipo del documento:
Article