Your browser doesn't support javascript.
loading
Robust excitons inhabit soft supramolecular nanotubes.
Eisele, Dörthe M; Arias, Dylan H; Fu, Xiaofeng; Bloemsma, Erik A; Steiner, Colby P; Jensen, Russell A; Rebentrost, Patrick; Eisele, Holger; Tokmakoff, Andrei; Lloyd, Seth; Nelson, Keith A; Nicastro, Daniela; Knoester, Jasper; Bawendi, Moungi G.
Afiliación
  • Eisele DM; Center for Excitonics and Department of Chemistry and Eisele@ccny.cuny.edu Nicastro@brandeis.edu J.Knoester@rug.nl MGB@mit.edu.
  • Arias DH; Center for Excitonics and Department of Chemistry and Eisele@ccny.cuny.edu Nicastro@brandeis.edu J.Knoester@rug.nl MGB@mit.edu.
  • Fu X; Biology Department, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454;
  • Bloemsma EA; Institute for Theoretical Physics and Zernike Institute for Advanced Materials, University of Groningen, NL-9747 AG, Groningen, The Netherlands;
  • Steiner CP; Center for Excitonics and Department of Chemistry and.
  • Jensen RA; Center for Excitonics and Department of Chemistry and.
  • Rebentrost P; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;
  • Eisele H; Institut für Festkörperphysik, Technische Universität Berlin, 103623 Berlin, Germany; and.
  • Tokmakoff A; Department of Chemistry, University of Chicago, Chicago, IL 60637.
  • Lloyd S; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;
  • Nelson KA; Center for Excitonics and Department of Chemistry and.
  • Nicastro D; Biology Department, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454; Eisele@ccny.cuny.edu Nicastro@brandeis.edu J.Knoester@rug.nl MGB@mit.edu.
  • Knoester J; Institute for Theoretical Physics and Zernike Institute for Advanced Materials, University of Groningen, NL-9747 AG, Groningen, The Netherlands; Eisele@ccny.cuny.edu Nicastro@brandeis.edu J.Knoester@rug.nl MGB@mit.edu.
  • Bawendi MG; Center for Excitonics and Department of Chemistry and Eisele@ccny.cuny.edu Nicastro@brandeis.edu J.Knoester@rug.nl MGB@mit.edu.
Proc Natl Acad Sci U S A ; 111(33): E3367-75, 2014 Aug 19.
Article en En | MEDLINE | ID: mdl-25092336
ABSTRACT
Nature's highly efficient light-harvesting antennae, such as those found in green sulfur bacteria, consist of supramolecular building blocks that self-assemble into a hierarchy of close-packed structures. In an effort to mimic the fundamental processes that govern nature's efficient systems, it is important to elucidate the role of each level of hierarchy from molecule, to supramolecular building block, to close-packed building blocks. Here, we study the impact of hierarchical structure. We present a model system that mirrors nature's complexity cylinders self-assembled from cyanine-dye molecules. Our work reveals that even though close-packing may alter the cylinders' soft mesoscopic structure, robust delocalized excitons are retained Internal order and strong excitation-transfer interactions--prerequisites for efficient energy transport--are both maintained. Our results suggest that the cylindrical geometry strongly favors robust excitons; it presents a rational design that is potentially key to nature's high efficiency, allowing construction of efficient light-harvesting devices even from soft, supramolecular materials.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Nanotubos Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2014 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Nanotubos Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2014 Tipo del documento: Article