Cyclic-di-GMP levels affect Pseudomonas aeruginosa fitness in the presence of imipenem.
Environ Microbiol
; 16(5): 1321-33, 2014 May.
Article
en En
| MEDLINE
| ID: mdl-25118352
A large number of genes coding for enzymes predicted to synthesize and degrade 3'-5-cyclic diguanylic acid (c-di-GMP) is found in most bacterial genomes and this dinucleotide emerged as an intracellular signal-controlling bacterial behaviour. An association between high levels of c-di-GMP and antibiotic resistance may be expected because c-di-GMP regulates biofilm formation and this mode of growth leads to enhanced antibiotic resistance. However, a clear understanding of this correlation has not been established. We found that increased levels of c-di-GMP in Pseudomonas aeruginosa improve fitness in the presence of imipenem, even when grown as planktonic cells. P. aeruginosa post-transcriptionally regulates the amounts of five porins in response to c-di-GMP, including OprD, responsible for imipenem uptake. Cells with low c-di-GMP levels are consequently more sensitive to this antibiotic. Main efflux pumps or ß-lactamase genes did not show altered mRNA levels in P. aeruginosa strains with modified different c-di-GMP concentrations. Together, our findings show that c-di-GMP levels modulate fitness of planktonic cultures in the presence of imipenem.
Buscar en Google
Bases de datos:
MEDLINE
Asunto principal:
Pseudomonas aeruginosa
/
Imipenem
/
GMP Cíclico
/
Antibacterianos
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Environ Microbiol
Asunto de la revista:
MICROBIOLOGIA
/
SAUDE AMBIENTAL
Año:
2014
Tipo del documento:
Article