Your browser doesn't support javascript.
loading
Generation and Evaluation of a Cortical Area Parcellation from Resting-State Correlations.
Gordon, Evan M; Laumann, Timothy O; Adeyemo, Babatunde; Huckins, Jeremy F; Kelley, William M; Petersen, Steven E.
Afiliación
  • Gordon EM; Department of Neurology.
  • Laumann TO; Department of Neurology.
  • Adeyemo B; Department of Neurology.
  • Huckins JF; Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
  • Kelley WM; Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
  • Petersen SE; Department of Neurology Department of Psychology Department of Radiology Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, USA.
Cereb Cortex ; 26(1): 288-303, 2016 Jan.
Article en En | MEDLINE | ID: mdl-25316338
The cortical surface is organized into a large number of cortical areas; however, these areas have not been comprehensively mapped in the human. Abrupt transitions in resting-state functional connectivity (RSFC) patterns can noninvasively identify locations of putative borders between cortical areas (RSFC-boundary mapping; Cohen et al. 2008). Here we describe a technique for using RSFC-boundary maps to define parcels that represent putative cortical areas. These parcels had highly homogenous RSFC patterns, indicating that they contained one unique RSFC signal; furthermore, the parcels were much more homogenous than a null model matched for parcel size when tested in two separate datasets. Several alternative parcellation schemes were tested this way, and no other parcellation was as homogenous as or had as large a difference compared with its null model. The boundary map-derived parcellation contained parcels that overlapped with architectonic mapping of areas 17, 2, 3, and 4. These parcels had a network structure similar to the known network structure of the brain, and their connectivity patterns were reliable across individual subjects. These observations suggest that RSFC-boundary map-derived parcels provide information about the location and extent of human cortical areas. A parcellation generated using this method is available at http://www.nil.wustl.edu/labs/petersen/Resources.html.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Mapeo Encefálico / Corteza Cerebral / Vías Nerviosas Límite: Adult / Female / Humans / Male Idioma: En Revista: Cereb Cortex Asunto de la revista: CEREBRO Año: 2016 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Mapeo Encefálico / Corteza Cerebral / Vías Nerviosas Límite: Adult / Female / Humans / Male Idioma: En Revista: Cereb Cortex Asunto de la revista: CEREBRO Año: 2016 Tipo del documento: Article