Your browser doesn't support javascript.
loading
Comparative assessment of orthogonal polynomials for wavefront reconstruction over the square aperture.
J Opt Soc Am A Opt Image Sci Vis ; 31(10): 2304-11, 2014 Oct 01.
Article en En | MEDLINE | ID: mdl-25401259
Four orthogonal polynomials for reconstructing a wavefront over a square aperture based on the modal method are currently available, namely, the 2D Chebyshev polynomials, 2D Legendre polynomials, Zernike square polynomials and Numerical polynomials. They are all orthogonal over the full unit square domain. 2D Chebyshev polynomials are defined by the product of Chebyshev polynomials in x and y variables, as are 2D Legendre polynomials. Zernike square polynomials are derived by the Gram-Schmidt orthogonalization process, where the integration region across the full unit square is circumscribed outside the unit circle. Numerical polynomials are obtained by numerical calculation. The presented study is to compare these four orthogonal polynomials by theoretical analysis and numerical experiments from the aspects of reconstruction accuracy, remaining errors, and robustness. Results show that the Numerical orthogonal polynomial is superior to the other three polynomials because of its high accuracy and robustness even in the case of a wavefront with incomplete data.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: J Opt Soc Am A Opt Image Sci Vis Asunto de la revista: OFTALMOLOGIA Año: 2014 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: J Opt Soc Am A Opt Image Sci Vis Asunto de la revista: OFTALMOLOGIA Año: 2014 Tipo del documento: Article