Your browser doesn't support javascript.
loading
Moments of zeta functions associated to hyperelliptic curves over finite fields.
Rubinstein, Michael O; Wu, Kaiyu.
Afiliación
  • Rubinstein MO; Pure Mathematics, University of Waterloo, 200 University Avenue W, Waterloo, Ontario, Canada N2L3G1 michael.o.rubinstein@gmail.com.
  • Wu K; Pure Mathematics, University of Waterloo, 200 University Avenue W, Waterloo, Ontario, Canada N2L3G1.
Philos Trans A Math Phys Eng Sci ; 239(2040)2015 Apr 28.
Article en En | MEDLINE | ID: mdl-25802418
Let q be an odd prime power, and Hq,d denote the set of square-free monic polynomials D(x)∈Fq[x] of degree d. Katz and Sarnak showed that the moments, over Hq,d, of the zeta functions associated to the curves y(2)=D(x), evaluated at the central point, tend, as q→∞, to the moments of characteristic polynomials, evaluated at the central point, of matrices in USp(2⌊(d-1)/2⌋). Using techniques that were originally developed for studying moments of L-functions over number fields, Andrade and Keating conjectured an asymptotic formula for the moments for q fixed and q→∞. We provide theoretical and numerical evidence in favour of their conjecture. In some cases, we are able to work out exact formulae for the moments and use these to precisely determine the size of the remainder term in the predicted moments.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Philos Trans A Math Phys Eng Sci Asunto de la revista: BIOFISICA / ENGENHARIA BIOMEDICA Año: 2015 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Philos Trans A Math Phys Eng Sci Asunto de la revista: BIOFISICA / ENGENHARIA BIOMEDICA Año: 2015 Tipo del documento: Article