Your browser doesn't support javascript.
loading
Delayed Administration of Tat-HA-NR2B9c Promotes Recovery After Stroke in Rats.
Zhou, Hai-Hui; Tang, Ying; Zhang, Xin-Yong; Luo, Chun-Xia; Gao, Li-Yan; Wu, Hai-Yin; Chang, Lei; Zhu, Dong-Ya.
Afiliación
  • Zhou HH; From the Department of Pharmacology, School of Pharmacy (H.-H.Z., Y.T., X.-Y.Z., C.-X.L., L.-Y.G., H.-Y.W., L.C., D.-Y.Z.), Institution of Stem Cells and Neuroregeneration (C.-X.L., H.-Y.W., D.-Y.Z.), Nanjing Medical University, Nanjing, China.
  • Tang Y; From the Department of Pharmacology, School of Pharmacy (H.-H.Z., Y.T., X.-Y.Z., C.-X.L., L.-Y.G., H.-Y.W., L.C., D.-Y.Z.), Institution of Stem Cells and Neuroregeneration (C.-X.L., H.-Y.W., D.-Y.Z.), Nanjing Medical University, Nanjing, China.
  • Zhang XY; From the Department of Pharmacology, School of Pharmacy (H.-H.Z., Y.T., X.-Y.Z., C.-X.L., L.-Y.G., H.-Y.W., L.C., D.-Y.Z.), Institution of Stem Cells and Neuroregeneration (C.-X.L., H.-Y.W., D.-Y.Z.), Nanjing Medical University, Nanjing, China.
  • Luo CX; From the Department of Pharmacology, School of Pharmacy (H.-H.Z., Y.T., X.-Y.Z., C.-X.L., L.-Y.G., H.-Y.W., L.C., D.-Y.Z.), Institution of Stem Cells and Neuroregeneration (C.-X.L., H.-Y.W., D.-Y.Z.), Nanjing Medical University, Nanjing, China.
  • Gao LY; From the Department of Pharmacology, School of Pharmacy (H.-H.Z., Y.T., X.-Y.Z., C.-X.L., L.-Y.G., H.-Y.W., L.C., D.-Y.Z.), Institution of Stem Cells and Neuroregeneration (C.-X.L., H.-Y.W., D.-Y.Z.), Nanjing Medical University, Nanjing, China.
  • Wu HY; From the Department of Pharmacology, School of Pharmacy (H.-H.Z., Y.T., X.-Y.Z., C.-X.L., L.-Y.G., H.-Y.W., L.C., D.-Y.Z.), Institution of Stem Cells and Neuroregeneration (C.-X.L., H.-Y.W., D.-Y.Z.), Nanjing Medical University, Nanjing, China.
  • Chang L; From the Department of Pharmacology, School of Pharmacy (H.-H.Z., Y.T., X.-Y.Z., C.-X.L., L.-Y.G., H.-Y.W., L.C., D.-Y.Z.), Institution of Stem Cells and Neuroregeneration (C.-X.L., H.-Y.W., D.-Y.Z.), Nanjing Medical University, Nanjing, China.
  • Zhu DY; From the Department of Pharmacology, School of Pharmacy (H.-H.Z., Y.T., X.-Y.Z., C.-X.L., L.-Y.G., H.-Y.W., L.C., D.-Y.Z.), Institution of Stem Cells and Neuroregeneration (C.-X.L., H.-Y.W., D.-Y.Z.), Nanjing Medical University, Nanjing, China. dyzhu@njmu.edu.cn.
Stroke ; 46(5): 1352-8, 2015 May.
Article en En | MEDLINE | ID: mdl-25851770
BACKGROUND AND PURPOSE: Previous studies reported that Tat-NR2B9c, a peptide disrupting the N-methyl-d-aspartate receptor-postsynaptic density protein-95 interaction, reduced ischemic damage in the acute phase after stroke. However, its effect in the subacute phase is unknown. The aim of this study is to determine whether disrupting the N-methyl-d-aspartate receptor-postsynaptic density protein-95 interaction in the subacute phase promotes recovery after stroke. METHODS: Studies were performed on Sprague-Dawley rats or nNOS(-/-) mice, and experimental ischemic stroke was induced by middle cerebral artery occlusion. Animals were treated with drugs starting at day 4 after ischemia. Sensorimotor functions and spatial learning and memory ability were assessed after drug treatment. Then, rats were euthanized for morphological observation and biochemical tests. RESULTS: Disrupting the N-methyl-d-aspartate receptor-postsynaptic density protein-95 interaction with Tat-HA-NR2B9c significantly ameliorated the ischemia-induced impairments of spatial memory and sensorimotor functions in rats during subacute stage but did not improve stroke outcome in nNOS(-/-) mice. Consistent with the functional recovery, Tat-HA-NR2B9c substantially increased neurogenesis in the dentate gyrus and dendritic spine density of mature neurons in the motor cortex of rats, meanwhile, reversed the ischemia-induced formation of S-nitrosylation-cyclin-dependent kinase 5 and increased cyclin-dependent kinase 5 activity in ipsilateral hippocampus. However, directly blocking N-methyl-d-aspartate receptors with MK-801 or Ro 25-6981 did not show the beneficial effects above. CONCLUSIONS: Dissociating N-methyl-d-aspartate receptor-postsynaptic density protein-95 coupling by Tat-HA-NR2B9c in the subacute phase after stroke promotes functional recovery, probably because of that it increases neurogenesis and dendritic spine density of mature neurons via regulating cyclin-dependent kinase 5 in the ischemic brain.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Péptidos / Fármacos Neuroprotectores / Accidente Cerebrovascular Límite: Animals Idioma: En Revista: Stroke Año: 2015 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Péptidos / Fármacos Neuroprotectores / Accidente Cerebrovascular Límite: Animals Idioma: En Revista: Stroke Año: 2015 Tipo del documento: Article País de afiliación: China