Your browser doesn't support javascript.
loading
Plasmon resonances of Ag capped Si nanopillars fabricated using mask-less lithography.
Opt Express ; 23(10): 12965-78, 2015 May 18.
Article en En | MEDLINE | ID: mdl-26074549
Localized surface plasmon resonances (LSPR) and plasmon couplings in Ag capped Si Nanopillar (Ag NP) structures are studied using 3D FEM simulations and dark-field scattering microscopy. Simulations show that a standalone Ag NP supports two LSPR modes, i.e. the particle mode and the cavity mode. The LSPR peak position of the particle mode can be tuned by changing the size of the Ag cap, and can be hybridized by leaning of pillars. The resonance position of the cavity resonance mode can be tuned primarily via the diameter of the Si pillar, and cannot be tuned via leaning of Ag NPs. The presence of a substrate dramatically changes the intensity of these two LSPR modes by introducing constructive and destructive interference patterns with incident and reflected fields. Experimental scattering spectra can be interpreted using theoretical simulations. The Ag NP substrate displays a broad plasmonic resonance band due to the contribution from both the hybridized particle LSPR and the cavity LSPR modes.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Opt Express Asunto de la revista: OFTALMOLOGIA Año: 2015 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Opt Express Asunto de la revista: OFTALMOLOGIA Año: 2015 Tipo del documento: Article