Brain size regulations by cbp haploinsufficiency evaluated by in-vivo MRI based volumetry.
Sci Rep
; 5: 16256, 2015 Nov 06.
Article
en En
| MEDLINE
| ID: mdl-26543002
The Rubinstein-Taybi Syndrome (RSTS) is a congenital disease that affects brain development causing severe cognitive deficits. In most cases the disease is associated with dominant mutations in the gene encoding the CREB binding protein (CBP). In this work, we present the first quantitative analysis of brain abnormalities in a mouse model of RSTS using magnetic resonance imaging (MRI) and two novel self-developed automated algorithms for image volumetric analysis. Our results quantitatively confirm key syndromic features observed in RSTS patients, such as reductions in brain size (-16.31%, p < 0.05), white matter volume (-16.00%, p < 0.05), and corpus callosum (-12.40%, p < 0.05). Furthermore, they provide new insight into the developmental origin of the disease. By comparing brain tissues in a region by region basis between cbp(+/-) and cbp(+/+) littermates, we found that cbp haploinsufficiency is specifically associated with significant reductions in prosencephalic tissue, such us in the olfactory bulb and neocortex, whereas regions evolved from the embryonic rhombencephalon were spared. Despite the large volume reductions, the proportion between gray-, white-matter and cerebrospinal fluid were conserved, suggesting a role of CBP in brain size regulation. The commonalities with holoprosencephaly and arhinencephaly conditions suggest the inclusion of RSTS in the family of neuronal migration disorders.
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Síndrome de Rubinstein-Taybi
/
Encéfalo
/
Imagen por Resonancia Magnética
/
Proteína de Unión a CREB
/
Haploinsuficiencia
Tipo de estudio:
Prognostic_studies
Límite:
Animals
Idioma:
En
Revista:
Sci Rep
Año:
2015
Tipo del documento:
Article
País de afiliación:
España