Involvement of transglutaminase 2 and voltage-gated potassium channels in cystamine vasodilatation in rat mesenteric small arteries.
Br J Pharmacol
; 173(5): 839-55, 2016 Mar.
Article
en En
| MEDLINE
| ID: mdl-26603619
BACKGROUND AND PURPOSE: Vasodilatation may contribute to the neuroprotective and vascular anti-remodelling effect of the tissue transglutaminase 2 (TG2) inhibitor cystamine. Here, we hypothesized that inhibition of TG2 followed by blockade of smooth muscle calcium entry and/or inhibition of Rho kinase underlies cystamine vasodilatation. EXPERIMENTAL APPROACH: We used rat mesenteric small arteries and RT-PCR, immunoblotting, and measurements of isometric wall tension, intracellular Ca(2+) ([Ca(2+)]i ), K(+) currents (patch clamp), and phosphorylation of myosin phosphatase targeting subunit 1 (MYPT1) and myosin regulatory light chain, in our experiments. KEY RESULTS: RT-PCR and immunoblotting revealed expression of TG2 in mesenteric small arteries. Cystamine concentration-dependently inhibited responses to phenylephrine, 5-HT and U46619 and for extracellular potassium. Selective inhibitors of TG2, LDN 27129 and T101, also inhibited phenylephrine contraction. An inhibitor of PLC suppressed cystamine relaxation. Cystamine relaxed and reduced [Ca(2+)]i in phenylephrine-contracted arteries. In potassium-contracted arteries, cystamine induced less relaxation without changing [Ca(2+)]i , and these relaxations were blocked by mitochondrial complex inhibitors. Blockers of Kv 7 channels, XE991 and linopirdine, inhibited cystamine relaxation and increases in voltage-dependent smooth muscle currents. Cystamine and the Rho kinase inhibitor Y27632 reduced basal MYPT1-Thr(855) phosphorylation, but only Y27632 reduced phenylephrine-induced increases in MYPT1-Thr(855) and myosin regulatory light chain phosphorylation. CONCLUSIONS AND IMPLICATIONS: Cystamine induced vasodilatation by inhibition of receptor-coupled TG2, leading to opening of Kv channels and reduction of intracellular calcium, and by activation of a pathway sensitive to inhibitors of the mitochondrial complexes I and III. Both pathways may contribute to the antihypertensive and neuroprotective effect of cystamine.
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Vasodilatación
/
Transglutaminasas
/
Cistamina
/
Canales de Potasio con Entrada de Voltaje
/
Arterias Mesentéricas
Límite:
Animals
Idioma:
En
Revista:
Br J Pharmacol
Año:
2016
Tipo del documento:
Article
País de afiliación:
Dinamarca