Your browser doesn't support javascript.
loading
Precise assembly of complex beta sheet topologies from de novo designed building blocks.
King, Indigo Chris; Gleixner, James; Doyle, Lindsey; Kuzin, Alexandre; Hunt, John F; Xiao, Rong; Montelione, Gaetano T; Stoddard, Barry L; DiMaio, Frank; Baker, David.
Afiliación
  • King IC; Institute for Protein Design, University of Washington, Seattle, United States.
  • Gleixner J; Institute for Protein Design, University of Washington, Seattle, United States.
  • Doyle L; Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States.
  • Kuzin A; Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, United States.
  • Hunt JF; Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, United States.
  • Xiao R; Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, United States.
  • Montelione GT; Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, United States.
  • Stoddard BL; Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States.
  • DiMaio F; Institute for Protein Design, University of Washington, Seattle, United States.
  • Baker D; Institute for Protein Design, University of Washington, Seattle, United States.
Elife ; 42015 Dec 09.
Article en En | MEDLINE | ID: mdl-26650357
ABSTRACT
Design of complex alpha-beta protein topologies poses a challenge because of the large number of alternative packing arrangements. A similar challenge presumably limited the emergence of large and complex protein topologies in evolution. Here, we demonstrate that protein topologies with six and seven-stranded beta sheets can be designed by insertion of one de novo designed beta sheet containing protein into another such that the two beta sheets are merged to form a single extended sheet, followed by amino acid sequence optimization at the newly formed strand-strand, strand-helix, and helix-helix interfaces. Crystal structures of two such designs closely match the computational design models. Searches for similar structures in the SCOP protein domain database yield only weak matches with different beta sheet connectivities. A similar beta sheet fusion mechanism may have contributed to the emergence of complex beta sheets during natural protein evolution.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Proteínas Recombinantes de Fusión / Ingeniería de Proteínas / Estructura Secundaria de Proteína Idioma: En Revista: Elife Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Proteínas Recombinantes de Fusión / Ingeniería de Proteínas / Estructura Secundaria de Proteína Idioma: En Revista: Elife Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos