Your browser doesn't support javascript.
loading
Accuracy of genomic prediction using imputed whole-genome sequence data in white layers.
Heidaritabar, M; Calus, M P L; Megens, H-J; Vereijken, A; Groenen, M A M; Bastiaansen, J W M.
Afiliación
  • Heidaritabar M; Animal Breeding and Genomics Centre, Wageningen University, Wageningen, the Netherlands.
  • Calus MP; Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, Wageningen, the Netherlands.
  • Megens HJ; Animal Breeding and Genomics Centre, Wageningen University, Wageningen, the Netherlands.
  • Vereijken A; Hendrix Genetics Research, Technology and Services B.V., Boxmeer, the Netherlands.
  • Groenen MA; Animal Breeding and Genomics Centre, Wageningen University, Wageningen, the Netherlands.
  • Bastiaansen JW; Animal Breeding and Genomics Centre, Wageningen University, Wageningen, the Netherlands.
J Anim Breed Genet ; 133(3): 167-79, 2016 Jun.
Article en En | MEDLINE | ID: mdl-26776363
There is an increasing interest in using whole-genome sequence data in genomic selection breeding programmes. Prediction of breeding values is expected to be more accurate when whole-genome sequence is used, because the causal mutations are assumed to be in the data. We performed genomic prediction for the number of eggs in white layers using imputed whole-genome resequence data including ~4.6 million SNPs. The prediction accuracies based on sequence data were compared with the accuracies from the 60 K SNP panel. Predictions were based on genomic best linear unbiased prediction (GBLUP) as well as a Bayesian variable selection model (BayesC). Moreover, the prediction accuracy from using different types of variants (synonymous, non-synonymous and non-coding SNPs) was evaluated. Genomic prediction using the 60 K SNP panel resulted in a prediction accuracy of 0.74 when GBLUP was applied. With sequence data, there was a small increase (~1%) in prediction accuracy over the 60 K genotypes. With both 60 K SNP panel and sequence data, GBLUP slightly outperformed BayesC in predicting the breeding values. Selection of SNPs more likely to affect the phenotype (i.e. non-synonymous SNPs) did not improve the accuracy of genomic prediction. The fact that sequence data were based on imputation from a small number of sequenced animals may have limited the potential to improve the prediction accuracy. A small reference population (n = 1004) and possible exclusion of many causal SNPs during quality control can be other possible reasons for limited benefit of sequence data. We expect, however, that the limited improvement is because the 60 K SNP panel was already sufficiently dense to accurately determine the relationships between animals in our data.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Pollos / Análisis de Secuencia de ADN Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals Idioma: En Revista: J Anim Breed Genet Asunto de la revista: GENETICA / MEDICINA VETERINARIA Año: 2016 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Pollos / Análisis de Secuencia de ADN Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals Idioma: En Revista: J Anim Breed Genet Asunto de la revista: GENETICA / MEDICINA VETERINARIA Año: 2016 Tipo del documento: Article País de afiliación: Países Bajos