Your browser doesn't support javascript.
loading
Multivariate pattern classification of pediatric Tourette syndrome using functional connectivity MRI.
Greene, Deanna J; Church, Jessica A; Dosenbach, Nico U F; Nielsen, Ashley N; Adeyemo, Babatunde; Nardos, Binyam; Petersen, Steven E; Black, Kevin J; Schlaggar, Bradley L.
Afiliación
  • Greene DJ; Department of Psychiatry, Washington University School of Medicine, USA.
  • Church JA; Department of Radiology, Washington University School of Medicine, USA.
  • Dosenbach NU; Department of Psychology, The University of Texas at Austin, USA.
  • Nielsen AN; Department of Neurology, Washington University School of Medicine, USA.
  • Adeyemo B; Department of Neurology, Washington University School of Medicine, USA.
  • Nardos B; Department of Neurology, Washington University School of Medicine, USA.
  • Petersen SE; Department of Neurology, Washington University School of Medicine, USA.
  • Black KJ; Department of Radiology, Washington University School of Medicine, USA.
  • Schlaggar BL; Department of Neurology, Washington University School of Medicine, USA.
Dev Sci ; 19(4): 581-98, 2016 07.
Article en En | MEDLINE | ID: mdl-26834084
Tourette syndrome (TS) is a developmental neuropsychiatric disorder characterized by motor and vocal tics. Individuals with TS would benefit greatly from advances in prediction of symptom timecourse and treatment effectiveness. As a first step, we applied a multivariate method - support vector machine (SVM) classification - to test whether patterns in brain network activity, measured with resting state functional connectivity (RSFC) MRI, could predict diagnostic group membership for individuals. RSFC data from 42 children with TS (8-15 yrs) and 42 unaffected controls (age, IQ, in-scanner movement matched) were included. While univariate tests identified no significant group differences, SVM classified group membership with ~70% accuracy (p < .001). We also report a novel adaptation of SVM binary classification that, in addition to an overall accuracy rate for the SVM, provides a confidence measure for the accurate classification of each individual. Our results support the contention that multivariate methods can better capture the complexity of some brain disorders, and hold promise for predicting prognosis and treatment outcome for individuals with TS.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Síndrome de Tourette / Máquina de Vectores de Soporte Tipo de estudio: Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Adolescent / Child / Female / Humans / Male Idioma: En Revista: Dev Sci Asunto de la revista: PSICOLOGIA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Síndrome de Tourette / Máquina de Vectores de Soporte Tipo de estudio: Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Adolescent / Child / Female / Humans / Male Idioma: En Revista: Dev Sci Asunto de la revista: PSICOLOGIA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos