Your browser doesn't support javascript.
loading
Matching-centrality decomposition and the forecasting of new links in networks.
Rohr, Rudolf P; Naisbit, Russell E; Mazza, Christian; Bersier, Louis-Félix.
Afiliación
  • Rohr RP; Department of Biology-Ecology and Evolution, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland Integrative Ecology Group, Estación Biológica de Doñana, EBD-CSIC, Calle Américo Vespucio s/n, Sevilla 41092, Spain rudolf.rohr@unifr.ch.
  • Naisbit RE; Department of Biology-Ecology and Evolution, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland.
  • Mazza C; Department of Mathematics, University of Fribourg, Chemin du Musée 23, Fribourg 1700, Switzerland.
  • Bersier LF; Department of Biology-Ecology and Evolution, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland.
Proc Biol Sci ; 283(1824)2016 Feb 10.
Article en En | MEDLINE | ID: mdl-26842568
Networks play a prominent role in the study of complex systems of interacting entities in biology, sociology, and economics. Despite this diversity, we demonstrate here that a statistical model decomposing networks into matching and centrality components provides a comprehensive and unifying quantification of their architecture. The matching term quantifies the assortative structure in which node makes links with which other node, whereas the centrality term quantifies the number of links that nodes make. We show, for a diverse set of networks, that this decomposition can provide a tight fit to observed networks. Then we provide three applications. First, we show that the model allows very accurate prediction of missing links in partially known networks. Second, when node characteristics are known, we show how the matching-centrality decomposition can be related to this external information. Consequently, it offers us a simple and versatile tool to explore how node characteristics explain network architecture. Finally, we demonstrate the efficiency and flexibility of the model to forecast the links that a novel node would create if it were to join an existing network.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Apoyo Social / Transportes / Modelos Estadísticos / Comercio Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Proc Biol Sci Asunto de la revista: BIOLOGIA Año: 2016 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Apoyo Social / Transportes / Modelos Estadísticos / Comercio Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Proc Biol Sci Asunto de la revista: BIOLOGIA Año: 2016 Tipo del documento: Article País de afiliación: España