Your browser doesn't support javascript.
loading
Mechanisms Underlying the Neuromodulation of Spinal Circuits for Correcting Gait and Balance Deficits after Spinal Cord Injury.
Moraud, Eduardo Martin; Capogrosso, Marco; Formento, Emanuele; Wenger, Nikolaus; DiGiovanna, Jack; Courtine, Grégoire; Micera, Silvestro.
Afiliación
  • Moraud EM; Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland.
  • Capogrosso M; Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland; BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
  • Formento E; Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland.
  • Wenger N; Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland; Department of Neurology and Experimental Neurology, University of Berlin, 10098 Berlin, Germany.
  • DiGiovanna J; Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland.
  • Courtine G; Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland. Electronic address: gregoire.courtine@epfl.ch.
  • Micera S; Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland; BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy. Electronic address: silvestro.micera@epfl.ch.
Neuron ; 89(4): 814-28, 2016 Feb 17.
Article en En | MEDLINE | ID: mdl-26853304
Epidural electrical stimulation of lumbar segments facilitates standing and walking in animal models and humans with spinal cord injury. However, the mechanisms through which this neuromodulation therapy engages spinal circuits remain enigmatic. Using computer simulations and behavioral experiments, we provide evidence that epidural electrical stimulation interacts with muscle spindle feedback circuits to modulate muscle activity during locomotion. Hypothesis-driven strategies emerging from simulations steered the design of stimulation protocols that adjust bilateral hindlimb kinematics throughout gait execution. These stimulation strategies corrected subject-specific gait and balance deficits in rats with incomplete and complete spinal cord injury. The conservation of muscle spindle feedback circuits across mammals suggests that the same mechanisms may facilitate motor control in humans. These results provide a conceptual framework to improve stimulation protocols for clinical applications.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Traumatismos de la Médula Espinal / Trastornos de la Sensación / Trastornos Neurológicos de la Marcha / Equilibrio Postural Tipo de estudio: Etiology_studies / Guideline Límite: Animals Idioma: En Revista: Neuron Asunto de la revista: NEUROLOGIA Año: 2016 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Traumatismos de la Médula Espinal / Trastornos de la Sensación / Trastornos Neurológicos de la Marcha / Equilibrio Postural Tipo de estudio: Etiology_studies / Guideline Límite: Animals Idioma: En Revista: Neuron Asunto de la revista: NEUROLOGIA Año: 2016 Tipo del documento: Article País de afiliación: Suiza