Your browser doesn't support javascript.
loading
The effect of growth temperature on the nanoscale biochemical surface properties of Yersinia pestis.
Wang, Congzhou; Stanciu, Cristina E; Ehrhardt, Christopher J; Yadavalli, Vamsi K.
Afiliación
  • Wang C; Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, 23284-3028, USA.
  • Stanciu CE; Department of Forensic Science, Virginia Commonwealth University, 1015 Floyd Avenue, Richmond, VA, 23284, USA.
  • Ehrhardt CJ; Department of Forensic Science, Virginia Commonwealth University, 1015 Floyd Avenue, Richmond, VA, 23284, USA. cehrhardt@vcu.edu.
  • Yadavalli VK; Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, 23284-3028, USA. vyadavalli@vcu.edu.
Anal Bioanal Chem ; 408(20): 5585-91, 2016 Aug.
Article en En | MEDLINE | ID: mdl-27259520
Yersinia pestis, the causative agent of plague, has been responsible for several recurrent, lethal pandemics in history. Currently, it is an important pathogen to study owing to its virulence, adaptation to different environments during transmission, and potential use in bioterrorism. Here, we report on the changes to Y. pestis surfaces in different external microenvironments, specifically culture temperatures (6, 25, and 37 °C). Using nanoscale imaging coupled with functional mapping, we illustrate that changes in the surfaces of the bacterium from a morphological and biochemical standpoint can be analyzed simultaneously using atomic force microscopy. The results from functional mapping, obtained at a single cell level, show that the density of lipopolysaccharide (measured via terminal N-acetylglucosamine) on Y. pestis grown at 37 °C is only slightly higher than cells grown at 25 °C, but nearly three times higher than cells maintained at 6 °C for an extended period of time, thereby demonstrating that adaptations to different environments can be effectively captured using this technique. This nanoscale evaluation provides a new microscopic approach to study nanoscale properties of bacterial pathogens and investigate adaptations to different external environments.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Temperatura / Yersinia pestis / Adaptación Fisiológica / Microscopía de Fuerza Atómica / Nanopartículas Idioma: En Revista: Anal Bioanal Chem Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Temperatura / Yersinia pestis / Adaptación Fisiológica / Microscopía de Fuerza Atómica / Nanopartículas Idioma: En Revista: Anal Bioanal Chem Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos