Your browser doesn't support javascript.
loading
Co-delivery of pemetrexed and miR-21 antisense oligonucleotide by lipid-polymer hybrid nanoparticles and effects on glioblastoma cells.
Küçüktürkmen, Berrin; Devrim, Burcu; Saka, Ongun M; Yilmaz, Sükran; Arsoy, Taibe; Bozkir, Asuman.
Afiliación
  • Küçüktürkmen B; a Department of Pharmaceutical Technology, Faculty of Pharmacy , Ankara University , Ankara , Turkey.
  • Devrim B; a Department of Pharmaceutical Technology, Faculty of Pharmacy , Ankara University , Ankara , Turkey.
  • Saka OM; a Department of Pharmaceutical Technology, Faculty of Pharmacy , Ankara University , Ankara , Turkey.
  • Yilmaz S; b Foot and Mouth Disease Institute , Ankara , Turkey.
  • Arsoy T; b Foot and Mouth Disease Institute , Ankara , Turkey.
  • Bozkir A; a Department of Pharmaceutical Technology, Faculty of Pharmacy , Ankara University , Ankara , Turkey.
Drug Dev Ind Pharm ; 43(1): 12-21, 2017 Jan.
Article en En | MEDLINE | ID: mdl-27277750
ABSTRACT
Combination therapy using anticancer drugs and nucleic acid is a more promising strategy to overcome multidrug resistance in cancer and to enhance apoptosis. In this study, lipid-polymer hybrid nanoparticles (LPNs), which contain both pemetrexed and miR-21 antisense oligonucleotide (anti-miR-21), have been developed for treatment of glioblastoma, the most aggressive type of brain tumor. Prepared LPNs have been well characterized by particle size distribution and zeta potential measurements, determination of encapsulation efficiency, and in vitro release experiments. Morphology of LPNs was determined by transmission electron microscopy. LPNs had a hydrodynamic size below 100 nm and exhibited sustained release of pemetrexed up to 10 h. Encapsulation of pemetrexed in LPNs increased cellular uptake from 6% to 78%. Results of confocal microscopy analysis have shown that co-delivery of anti-miR-21 significantly improved accumulation of LPNs in the nucleus of U87MG cells. Nevertheless, more effective cytotoxicity results could not be obtained due to low concentration of anti-miR-21, loaded in LPNs. We expect that the effective drug delivery systems can be obtained with higher concentration of anti-miR-21 for the treatment of glioblastoma.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Polímeros / Oligonucleótidos Antisentido / Sistemas de Liberación de Medicamentos / Glioblastoma / Nanopartículas / Pemetrexed Límite: Humans Idioma: En Revista: Drug Dev Ind Pharm Año: 2017 Tipo del documento: Article País de afiliación: Turquía

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Polímeros / Oligonucleótidos Antisentido / Sistemas de Liberación de Medicamentos / Glioblastoma / Nanopartículas / Pemetrexed Límite: Humans Idioma: En Revista: Drug Dev Ind Pharm Año: 2017 Tipo del documento: Article País de afiliación: Turquía