Your browser doesn't support javascript.
loading
Density of Key-Species Determines Efficiency of Macroalgae Detritus Uptake by Intertidal Benthic Communities.
Karlson, Agnes M L; Niemand, Clarisse; Savage, Candida; Pilditch, Conrad A.
Afiliación
  • Karlson AM; Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden.
  • Niemand C; School of Science, University of Waikato, Hamilton, New Zealand.
  • Savage C; Department of Marine Science, University of Otago, Dunedin, New Zealand.
  • Pilditch CA; Department of Biological Sciences, University of Cape Town, Cape Town, South Africa.
PLoS One ; 11(7): e0158785, 2016.
Article en En | MEDLINE | ID: mdl-27414032
ABSTRACT
Accumulating evidence shows that increased biodiversity has a positive effect on ecosystem functioning, but the mechanisms that underpin this positive relationship are contentious. Complete extinctions of regional species pools are comparatively rare whereas compositional changes and reductions in abundance and biomass are common, although seldom the focus of biodiversity-ecosystem functioning studies. We use natural, small-scale patchiness in the density of two species of large bivalves with contrasting feeding modes (the suspension-feeding Austrovenus stutchburyi and deposit-feeding Macomona liliana) to examine their influence on the uptake of nitrogen from macroalgae detritus (i.e. measure of ecosystem function and food web efficiency) by other infauna in a 10-d laboratory isotope-tracer experiment. We predicted that densities of these key bivalve species and functional group diversity (calculated as Shannons H, a density-independent measure of community composition) of the intact infaunal community will be critical factors explaining variance in macroalgal per capita uptake rates by the community members and hence determine total uptake by the community. Results show that only two species, M. liliana and a large orbiniid polychaete (Scoloplos cylindrifer) dominated macroalgal nitrogen taken up by the whole community due to their large biomass. However, their densities were mostly not important or negatively influenced per capita uptake by other species. Instead, the density of a head-down deposit-feeder (the capitellid Heteromastus filiformis), scavengers (mainly nemertines and nereids) and species and functional group diversity, best explained per capita uptake rates in community members. Our results demonstrate the importance of species identity, density and large body size for ecosystem functioning and highlight the complex interactions underlying loss of ecological functions with declining biodiversity and compositional changes.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Algas Marinas / Bivalvos / Ecosistema / Cadena Alimentaria / Biodiversidad Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2016 Tipo del documento: Article País de afiliación: Suecia

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Algas Marinas / Bivalvos / Ecosistema / Cadena Alimentaria / Biodiversidad Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2016 Tipo del documento: Article País de afiliación: Suecia