Judicious Ligand Design in Ruthenium Polypyridyl CO2 Reduction Catalysts to Enhance Reactivity by Steric and Electronic Effects.
Chemistry
; 22(42): 14870-14880, 2016 Oct 10.
Article
en En
| MEDLINE
| ID: mdl-27459316
A series of RuII polypyridyl complexes of the structural design [RuII (R-tpy)(NN)(CH3 CN)]2+ (R-tpy=2,2':6',2''-terpyridine (R=H) or 4,4',4''-tri-tert-butyl-2,2':6',2''-terpyridine (R=tBu); NN=2,2'-bipyridine with methyl substituents in various positions) have been synthesized and analyzed for their ability to function as electrocatalysts for the reduction of CO2 to CO. Detailed electrochemical analyses establish how substitutions at different ring positions of the bipyridine and terpyridine ligands can have profound electronic and, even more importantly, steric effects that determine the complexes' reactivities. Whereas electron-donating groups para to the heteroatoms exhibit the expected electronic effect, with an increase in turnover frequencies at increased overpotential, the introduction of a methyl group at the ortho position of NN imposes drastic steric effects. Two complexes, [RuII (tpy)(6-mbpy)(CH3 CN)]2+ (trans-[3]2+ ; 6-mbpy=6-methyl-2,2'-bipyridine) and [RuII (tBu-tpy)(6-mbpy)(CH3 CN)]2+ (trans-[4]2+ ), in which the methyl group of the 6-mbpy ligand is trans to the CH3 CN ligand, show electrocatalytic CO2 reduction at a previously unreactive oxidation state of the complex. This low overpotential pathway follows an ECE mechanism (electron transfer-chemical reaction-electron transfer), and is a direct result of steric interactions that facilitate CH3 CN ligand dissociation, CO2 coordination, and ultimately catalytic turnover at the first reduction potential of the complexes. All experimental observations are rigorously corroborated by DFT calculations.
Texto completo:
1
Bases de datos:
MEDLINE
Idioma:
En
Revista:
Chemistry
Asunto de la revista:
QUIMICA
Año:
2016
Tipo del documento:
Article
País de afiliación:
Suecia