Reducing translation through eIF4G/IFG-1 improves survival under ER stress that depends on heat shock factor HSF-1 in Caenorhabditis elegans.
Aging Cell
; 15(6): 1027-1038, 2016 Dec.
Article
en En
| MEDLINE
| ID: mdl-27538368
Although certain methods of lowering and/or altering mRNA translation are associated with increased lifespan, the mechanisms underlying this effect remain largely unknown. We previously showed that the increased lifespan conferred by reducing expression of eukaryotic translation initiation factor 4G (eIF4G/IFG-1) enhances survival under starvation conditions while shifting protein expression toward factors involved with maintaining ER-dependent protein and lipid balance. In this study, we investigated changes in ER homeostasis and found that lower eIF4G/IFG-1 increased survival under conditions of ER stress. Enhanced survival required the ER stress sensor gene ire-1 and the ER calcium ATPase gene sca-1 and corresponded with increased translation of chaperones that mediate the ER unfolded protein response (UPRER ). Surprisingly, the heat-shock transcription factor gene hsf-1 was also required for enhanced survival, despite having little or no influence on the ability of wild-type animals to survive ER stress. The requirement for hsf-1 led us to re-evaluate the role of eIF4G/IFG-1 on thermotolerance. Results show that lowering expression of this translation factor enhanced thermotolerance, but only after prolonged attenuation, the timing of which corresponded to increased transcription of heat-shock factor transcriptional targets. Results indicate that restricting overall translation through eIF4G/IFG-1 enhances ER and cytoplasmic proteostasis through a mechanism that relies heavily on hsf-1.
Texto completo:
1
Bases de datos:
MEDLINE
Idioma:
En
Revista:
Aging Cell
Año:
2016
Tipo del documento:
Article
País de afiliación:
Estados Unidos