Your browser doesn't support javascript.
loading
Magnetically Propelled Fish-Like Nanoswimmers.
Li, Tianlong; Li, Jinxing; Zhang, Hongtao; Chang, Xiaocong; Song, Wenping; Hu, Yanan; Shao, Guangbin; Sandraz, Elodie; Zhang, Guangyu; Li, Longqiu; Wang, Joseph.
Afiliación
  • Li T; State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
  • Li J; Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
  • Zhang H; Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
  • Chang X; State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
  • Song W; State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
  • Hu Y; State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
  • Shao G; State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
  • Sandraz E; State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
  • Zhang G; Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
  • Li L; State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
  • Wang J; State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
Small ; 12(44): 6098-6105, 2016 Nov.
Article en En | MEDLINE | ID: mdl-27600373
ABSTRACT
The swimming locomotion of fish involves a complex interplay between a deformable body and induced flow in the surrounding fluid. While innovative robotic devices, inspired by physicomechanical designs evolved in fish, have been created for underwater propulsion of large swimmers, scaling such powerful locomotion into micro-/nanoscale propulsion remains challenging. Here, a magnetically propelled fish-like artificial nanoswimmer is demonstrated that emulates the body and caudal fin propulsion swimming mechanism displayed by fish. To mimic the deformable fish body for periodic shape changes, template-electrosynthesized multisegment nanowire swimmers are used to construct the artificial nanofishes (diameter 200 nm; length 4.8 µm). The resulting nanofish consists a gold segment as the head, two nickel segments as the body, and one gold segment as the caudal fin, with three flexible porous silver hinges linking each segment. Under an oscillating magnetic field, the propulsive nickel elements bend the body and caudal fin periodically to generate travelling-wave motions with speeds exceeding 30 µm s-1 . The propulsion dynamics is studied theoretically using the immersed boundary method. Such body-deformable nanofishes exhibit a high swimming efficiency and can serve as promising biomimetic nanorobotic devices for nanoscale biomedical applications.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Natación / Biomimética / Nanopartículas / Fenómenos Magnéticos / Peces Límite: Animals Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2016 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Natación / Biomimética / Nanopartículas / Fenómenos Magnéticos / Peces Límite: Animals Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2016 Tipo del documento: Article País de afiliación: China