Your browser doesn't support javascript.
loading
Purely substitutional nitrogen on graphene/Pt(111) unveiled by STM and first principles calculations.
Martín-Recio, Ana; Romero-Muñiz, Carlos; Pou, Pablo; Pérez, Rubén; Gómez-Rodríguez, José M.
Afiliación
  • Martín-Recio A; Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain. josem.gomez@uam.es.
  • Romero-Muñiz C; Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
  • Pou P; Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
  • Pérez R; Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
  • Gómez-Rodríguez JM; Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain. josem.gomez@uam.es and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid
Nanoscale ; 8(40): 17686-17693, 2016 Oct 14.
Article en En | MEDLINE | ID: mdl-27722743
ABSTRACT
Nitrogen doping of graphene can be an efficient way of tuning its pristine electronic properties. Several techniques have been used to introduce nitrogen atoms on graphene layers. The main problem in most of them is the formation of a variety of C-N species that produce different electronic and structural changes on the 2D layer. Here we report on a method to obtain purely substitutional nitrogen on graphene on Pt(111) surfaces. A detailed experimental study performed in situ, under ultra-high vacuum conditions with scanning tunneling microscopy (STM), low energy electron diffraction (LEED) and Auger electron spectroscopy (AES) of the different steps on the preparation of the sample, has allowed us to gain insight into the optimal parameters for this growth method, that combines ion bombardment and annealing. This experimental work is complemented by first-principles calculations and STM simulations that provide the variation of the projected density of states due to both the metallic substrate and the nitrogen atoms. These calculations enlighten the experimental findings and prove that the species found are graphitic nitrogen. This easy and effective technique leads to the possibility of playing with the amount of dopants and the metallic substrate to obtain the desired doping of the graphene layer.
Buscar en Google
Bases de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2016 Tipo del documento: Article País de afiliación: España
Buscar en Google
Bases de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2016 Tipo del documento: Article País de afiliación: España