Your browser doesn't support javascript.
loading
Use of mariner transposases for one-step delivery and integration of DNA in prokaryotes and eukaryotes by transfection.
Trubitsyna, Maryia; Michlewski, Gracjan; Finnegan, David J; Elfick, Alistair; Rosser, Susan J; Richardson, Julia M; French, Christopher E.
Afiliación
  • Trubitsyna M; Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK.
  • Michlewski G; Institute of Cell Biology, School of Biological Sciences, Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK.
  • Finnegan DJ; Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK.
  • Elfick A; Institute of BioEngineering, School of Engineering, University of Edinburgh, Edinburgh EH9 3JL, UK.
  • Rosser SJ; Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, UK Centre for Mammalian Synthetic Biology, University of Edinburgh, Edinburgh EH9 3FF, UK.
  • Richardson JM; Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK.
  • French CE; Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK.
Nucleic Acids Res ; 45(10): e89, 2017 Jun 02.
Article en En | MEDLINE | ID: mdl-28204586
ABSTRACT
Delivery of DNA to cells and its subsequent integration into the host genome is a fundamental task in molecular biology, biotechnology and gene therapy. Here we describe an IP-free one-step method that enables stable genome integration into either prokaryotic or eukaryotic cells. A synthetic mariner transposon is generated by flanking a DNA sequence with short inverted repeats. When purified recombinant Mos1 or Mboumar-9 transposase is co-transfected with transposon-containing plasmid DNA, it penetrates prokaryotic or eukaryotic cells and integrates the target DNA into the genome. In vivo integrations by purified transposase can be achieved by electroporation, chemical transfection or Lipofection of the transposaseDNA mixture, in contrast to other published transposon-based protocols which require electroporation or microinjection. As in other transposome systems, no helper plasmids are required since transposases are not expressed inside the host cells, thus leading to generation of stable cell lines. Since it does not require electroporation or microinjection, this tool has the potential to be applied for automated high-throughput creation of libraries of random integrants for purposes including gene knock-out libraries, screening for optimal integration positions or safe genome locations in different organisms, selection of the highest production of valuable compounds for biotechnology, and sequencing.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Plásmidos / Elementos Transponibles de ADN / Mutagénesis Insercional / Transposasas / Proteínas de Unión al ADN Tipo de estudio: Guideline Límite: Humans Idioma: En Revista: Nucleic Acids Res Año: 2017 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Plásmidos / Elementos Transponibles de ADN / Mutagénesis Insercional / Transposasas / Proteínas de Unión al ADN Tipo de estudio: Guideline Límite: Humans Idioma: En Revista: Nucleic Acids Res Año: 2017 Tipo del documento: Article País de afiliación: Reino Unido