Your browser doesn't support javascript.
loading
Harnessing the hygroscopic and biofluorescent behaviors of genetically tractable microbial cells to design biohybrid wearables.
Wang, Wen; Yao, Lining; Cheng, Chin-Yi; Zhang, Teng; Atsumi, Hiroshi; Wang, Luda; Wang, Guanyun; Anilionyte, Oksana; Steiner, Helene; Ou, Jifei; Zhou, Kang; Wawrousek, Chris; Petrecca, Katherine; Belcher, Angela M; Karnik, Rohit; Zhao, Xuanhe; Wang, Daniel I C; Ishii, Hiroshi.
Afiliación
  • Wang W; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Yao L; MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Cheng CY; MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Zhang T; MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Atsumi H; Department of Architecture, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Wang L; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Wang G; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Anilionyte O; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Steiner H; MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Ou J; MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Zhou K; MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Wawrousek C; MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Petrecca K; Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
  • Belcher AM; New Balance Athletics, 190 Merrimack Street, Lawrence, MA 01843, USA.
  • Karnik R; New Balance Athletics, 190 Merrimack Street, Lawrence, MA 01843, USA.
  • Zhao X; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Wang DIC; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Ishii H; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Sci Adv ; 3(5): e1601984, 2017 May.
Article en En | MEDLINE | ID: mdl-28560325
ABSTRACT
Cells' biomechanical responses to external stimuli have been intensively studied but rarely implemented into devices that interact with the human body. We demonstrate that the hygroscopic and biofluorescent behaviors of living cells can be engineered to design biohybrid wearables, which give multifunctional responsiveness to human sweat. By depositing genetically tractable microbes on a humidity-inert material to form a heterogeneous multilayered structure, we obtained biohybrid films that can reversibly change shape and biofluorescence intensity within a few seconds in response to environmental humidity gradients. Experimental characterization and mechanical modeling of the film were performed to guide the design of a wearable running suit and a fluorescent shoe prototype with bio-flaps that dynamically modulates ventilation in synergy with the body's need for cooling.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Bacterias / Fluorescencia / Dispositivos Electrónicos Vestibles / Humedad / Membranas Artificiales Límite: Humans Idioma: En Revista: Sci Adv Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Bacterias / Fluorescencia / Dispositivos Electrónicos Vestibles / Humedad / Membranas Artificiales Límite: Humans Idioma: En Revista: Sci Adv Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos