Exploring for the optimal structural design for the 3D-printing technology for cranial reconstruction: a biomechanical and histological study comparison of solid vs. porous structure.
Childs Nerv Syst
; 33(9): 1553-1562, 2017 Sep.
Article
en En
| MEDLINE
| ID: mdl-28623521
PURPOSE: Cranioplasty for recovering skull defects carries the risk for a number of complications. Various materials are used, including autologous bone graft, metallic materials, and non-metallic materials, each of which has advantages and disadvantages. If the use of autologous bone is not feasible, those artificial materials also have constraints in the case of complex anatomy and/or irregular defects. MATERIAL AND METHODS: This study used metal 3D-printing technology to overcome these existing drawbacks and analyze the clinical and mechanical performance requirements. To find an optimal structure that satisfied the structural and mechanical stability requirements, we evaluated biomechanical stability using finite element analysis (FEA) and mechanical testing. To ensure clinical applicability, the model was subjected to histological evaluation. Each specimen was implanted in the femur of a rabbit and was evaluated using histological measurements and push-out test. RESULTS AND CONCLUSION: We believe that our data will provide the basis for future applications of a variety of unit structures and further clinical trials and research, as well as the direction for the study of other patient-specific implants.
Palabras clave
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Cráneo
/
Ingeniería de Tejidos
/
Andamios del Tejido
/
Impresión Tridimensional
Límite:
Animals
/
Humans
Idioma:
En
Revista:
Childs Nerv Syst
Asunto de la revista:
NEUROLOGIA
/
PEDIATRIA
Año:
2017
Tipo del documento:
Article
País de afiliación:
Corea del Sur