Your browser doesn't support javascript.
loading
Four simple rules that are sufficient to generate the mammalian blastocyst.
Nissen, Silas Boye; Perera, Marta; Gonzalez, Javier Martin; Morgani, Sophie M; Jensen, Mogens H; Sneppen, Kim; Brickman, Joshua M; Trusina, Ala.
Afiliación
  • Nissen SB; StemPhys, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
  • Perera M; The Danish Stem Cell Centre, DanStem, University of Copenhagen, Copenhagen, Denmark.
  • Gonzalez JM; Transgenic Core Facility, University of Copenhagen, Copenhagen, Denmark.
  • Morgani SM; The Danish Stem Cell Centre, DanStem, University of Copenhagen, Copenhagen, Denmark.
  • Jensen MH; StemPhys, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
  • Sneppen K; CMOL, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
  • Brickman JM; StemPhys, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
  • Trusina A; The Danish Stem Cell Centre, DanStem, University of Copenhagen, Copenhagen, Denmark.
PLoS Biol ; 15(7): e2000737, 2017 Jul.
Article en En | MEDLINE | ID: mdl-28700688
Early mammalian development is both highly regulative and self-organizing. It involves the interplay of cell position, predetermined gene regulatory networks, and environmental interactions to generate the physical arrangement of the blastocyst with precise timing. However, this process occurs in the absence of maternal information and in the presence of transcriptional stochasticity. How does the preimplantation embryo ensure robust, reproducible development in this context? It utilizes a versatile toolbox that includes complex intracellular networks coupled to cell-cell communication, segregation by differential adhesion, and apoptosis. Here, we ask whether a minimal set of developmental rules based on this toolbox is sufficient for successful blastocyst development, and to what extent these rules can explain mutant and experimental phenotypes. We implemented experimentally reported mechanisms for polarity, cell-cell signaling, adhesion, and apoptosis as a set of developmental rules in an agent-based in silico model of physically interacting cells. We find that this model quantitatively reproduces specific mutant phenotypes and provides an explanation for the emergence of heterogeneity without requiring any initial transcriptional variation. It also suggests that a fixed time point for the cells' competence of fibroblast growth factor (FGF)/extracellular signal-regulated kinase (ERK) sets an embryonic clock that enables certain scaling phenomena, a concept that we evaluate quantitatively by manipulating embryos in vitro. Based on these observations, we conclude that the minimal set of rules enables the embryo to experiment with stochastic gene expression and could provide the robustness necessary for the evolutionary diversification of the preimplantation gene regulatory network.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Simulación por Computador / Comunicación Celular / Regulación del Desarrollo de la Expresión Génica / Desarrollo Embrionario / Mamíferos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: PLoS Biol Asunto de la revista: BIOLOGIA Año: 2017 Tipo del documento: Article País de afiliación: Dinamarca

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Simulación por Computador / Comunicación Celular / Regulación del Desarrollo de la Expresión Génica / Desarrollo Embrionario / Mamíferos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: PLoS Biol Asunto de la revista: BIOLOGIA Año: 2017 Tipo del documento: Article País de afiliación: Dinamarca