Your browser doesn't support javascript.
loading
Compensatory Distal Reabsorption Drives Diuretic Resistance in Human Heart Failure.
Rao, Veena S; Planavsky, Noah; Hanberg, Jennifer S; Ahmad, Tariq; Brisco-Bacik, Meredith A; Wilson, Francis P; Jacoby, Daniel; Chen, Michael; Tang, W H Wilson; Cherney, David Z I; Ellison, David H; Testani, Jeffrey M.
Afiliación
  • Rao VS; Department of Internal Medicine and.
  • Planavsky N; Department of Geology and Geophysics, Yale University, New Haven, Connecticut.
  • Hanberg JS; Department of Internal Medicine and.
  • Ahmad T; Department of Internal Medicine and.
  • Brisco-Bacik MA; Department of Medicine, Cardiovascular Division, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania.
  • Wilson FP; Department of Internal Medicine and.
  • Jacoby D; Program of Applied Translational Research, Yale University School of Medicine, New Haven, Connecticut.
  • Chen M; Department of Internal Medicine and.
  • Tang WHW; Department of Internal Medicine and.
  • Cherney DZI; Section of Heart Failure and Cardiac Transplantation, Cleveland Clinic, Cleveland, Ohio.
  • Ellison DH; Division of Nephrology, Department of Medicine, Toronto General Hospital and Toronto General Hospital Research Institute, Toronto, Ontario, Canada.
  • Testani JM; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; and.
J Am Soc Nephrol ; 28(11): 3414-3424, 2017 Nov.
Article en En | MEDLINE | ID: mdl-28739647
Understanding the tubular location of diuretic resistance (DR) in heart failure (HF) is critical to developing targeted treatment strategies. Rodents chronically administered loop diuretics develop DR due to compensatory distal tubular sodium reabsorption, but whether this translates to human DR is unknown. We studied consecutive patients with HF (n=128) receiving treatment with loop diuretics at the Yale Transitional Care Center. We measured the fractional excretion of lithium (FELi), the gold standard for in vivo assessment of proximal tubular and loop of Henle sodium handling, to assess sodium exit after loop diuretic administration and FENa to assess the net sodium excreted into the urine. The mean±SD prediuretic FELi was 16.2%±9.5%, similar to that in a control cohort without HF not receiving diuretics (n=52; 16.6%±9.2%; P=0.82). Administration of a median of 160 (interquartile range, 40-270) mg intravenous furosemide equivalents increased FELi by 12.6%±10.8% (P<0.001) but increased FENa by only 4.8%±3.3%. Thus, only 34% (interquartile range, 15.6%-75.7%) of the estimated diuretic-induced sodium release did not undergo distal reabsorption. After controlling for urine diuretic levels, the increase in FELi explained only 6.4% of the increase in FENa (P=0.002). These data suggest that administration of high-dose loop diuretics to patients with HF yields meaningful increases in sodium exit from the proximal tubule/loop of Henle. However, little of this sodium seems to reach the urine, consistent with findings from animal models that indicate that distal tubular compensatory sodium reabsorption is a primary driver of DR.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico / Reabsorción Renal / Insuficiencia Cardíaca / Túbulos Renales Distales Tipo de estudio: Observational_studies / Prognostic_studies Límite: Aged / Female / Humans / Male Idioma: En Revista: J Am Soc Nephrol Asunto de la revista: NEFROLOGIA Año: 2017 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico / Reabsorción Renal / Insuficiencia Cardíaca / Túbulos Renales Distales Tipo de estudio: Observational_studies / Prognostic_studies Límite: Aged / Female / Humans / Male Idioma: En Revista: J Am Soc Nephrol Asunto de la revista: NEFROLOGIA Año: 2017 Tipo del documento: Article