Your browser doesn't support javascript.
loading
Pseudomonas aeruginosa Proteome under Hypoxic Stress Conditions Mimicking the Cystic Fibrosis Lung.
Kamath, Karthik Shantharam; Krisp, Christoph; Chick, Joel; Pascovici, Dana; Gygi, Steven P; Molloy, Mark P.
Afiliación
  • Kamath KS; Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney 2109, Australia.
  • Krisp C; Australian Proteome Analysis Facility, Macquarie University , Sydney 2109, Australia.
  • Chick J; Australian Proteome Analysis Facility, Macquarie University , Sydney 2109, Australia.
  • Pascovici D; Department of Cell Biology, Harvard Medical School , Boston, Massachusetts 02115, United States.
  • Gygi SP; Australian Proteome Analysis Facility, Macquarie University , Sydney 2109, Australia.
  • Molloy MP; Department of Cell Biology, Harvard Medical School , Boston, Massachusetts 02115, United States.
J Proteome Res ; 16(10): 3917-3928, 2017 10 06.
Article en En | MEDLINE | ID: mdl-28832155
ABSTRACT
Pseudomonas aeruginosa is a ubiquitous Gram-negative pathogen known to inhabit hypoxic mucus plugs of cystic fibrosis (CF) patient lungs. Despite the high prevalence and related patient mortality, the protein machinery enabling the bacterium to adapt to low oxygen environment remains to be fully elucidated. We investigated this by performing both SWATH mass spectrometry and data-dependent SPS-MS3 of TMT-labeled peptides to profile the proteomes of two P. aeruginosa CF isolates, PASS2 and PASS3, and a laboratory reference strain, PAO1, grown under hypoxic stress (O2 < 1%) in media that mimic the nutrient components of the CF lung. Quantitated across all three strains were 3967 P. aeruginosa proteins, reflecting approximately 71% of predicted ORFs in PAO1 and representing the most comprehensive proteome of clinically relevant P. aeruginosa to date. Comparative analysis revealed 735, 640, and 364 proteins were altered by 2-fold or more when comparing low oxygen to aerobic growth in PAO1, PASS2, and PASS3, respectively. Strikingly, under hypoxic stress, all strains showed concurrent increased abundance of proteins required for both aerobic (cbb3-1 and cbb3-2 terminal oxidases) and anaerobic denitrification and arginine fermentation, with the two clinical isolates showing higher relative expression of proteins in these pathways. Additionally, functional annotation revealed that clinical strains portray a unique expression profile of replication, membrane biogenesis, and virulence proteins during hypoxia which may endow these bacteria with a survival advantage. These protein profiles illuminate the diversity of P. aeruginosa mechanisms to adapt to low oxygen and shows that CF isolates initiate a robust molecular response to persist under these conditions.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Pseudomonas aeruginosa / Estrés Fisiológico / Hipoxia de la Célula / Proteoma / Fibrosis Quística Tipo de estudio: Risk_factors_studies Límite: Humans Idioma: En Revista: J Proteome Res Asunto de la revista: BIOQUIMICA Año: 2017 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Pseudomonas aeruginosa / Estrés Fisiológico / Hipoxia de la Célula / Proteoma / Fibrosis Quística Tipo de estudio: Risk_factors_studies Límite: Humans Idioma: En Revista: J Proteome Res Asunto de la revista: BIOQUIMICA Año: 2017 Tipo del documento: Article País de afiliación: Australia