Your browser doesn't support javascript.
loading
Corneal Cross-Linking With Verteporfin and Nonthermal Laser Therapy.
Alageel, Saleh A; Arafat, Samer N; Salvador-Culla, Borja; Kolovou, Paraskevi E; Jahanseir, Khadijeh; Kozak, Adam; Braithwaite, Gavin J C; Ciolino, Joseph B.
Afiliación
  • Alageel SA; Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA.
  • Arafat SN; Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA.
  • Salvador-Culla B; Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA.
  • Kolovou PE; Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA.
  • Jahanseir K; Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA.
  • Kozak A; Cambridge Polymer Group, Boston, MA.
  • Braithwaite GJC; Cambridge Polymer Group, Boston, MA.
  • Ciolino JB; Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA.
Cornea ; 37(3): 362-368, 2018 Mar.
Article en En | MEDLINE | ID: mdl-29176450
ABSTRACT

PURPOSE:

To test whether verteporfin with a nonthermal laser increases corneal mechanical stiffness and resistance to enzymatic degradation ex vivo.

METHODS:

Thirty human corneas (n = 5 per group) were treated with verteporfin alone (V), irradiated with nonthermal laser therapy (689 nm) alone (NTL), or received combined treatment of verteporfin with nonthermal laser therapy for 1 sequence (V+NTL1) or 6 sequences (V+NTL6) of 1 minute of NTL exposure. Positive controls were pretreated with 0.1% riboflavin/20% dextran every 3 to 5 minutes for 30 minutes and irradiated with ultraviolet light type A (λ = 370 nm, irradiance = 3 mW/cm) for 30 minutes using the Dresden protocol (R+UVA). Untreated corneas were used as negative controls. The corneal biomechanical properties were measured with enzymatic digestion, compression, creep, and tensile strength testing.

RESULTS:

V+NTL6- and R+UVA-treated corneas acquired higher rigidity and more pronounced curvature than untreated corneas. The stress-strain tests showed that V+NTL6 and R+UVA corneas became significantly stiffer than controls (P < 0.005). The V+NTL6 group seemed to be slightly stiffer than the R+UVA group, although the differences were not statistically significant. V+NTL6 corneas were found to have a significantly lower absolute creep rate (-1.87 vs. -3.46, P < 0.05) and significantly higher maximum stress values (7.67 vs. 3.02 P < 0.05) compared with untreated corneas.

CONCLUSIONS:

Verteporfin-NTL (V+NTL6) increases corneal mechanical stiffness and resistance to enzymatic collagenase degradation. Although a clinical study is needed, our results suggest that V+NTL6 induces corneal cross-linking and corneal biomechanical changes that are similar to those induced by standard corneal collagen cross-linking.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Fotoquimioterapia / Porfirinas / Fenómenos Biomecánicos / Fármacos Fotosensibilizantes / Córnea Tipo de estudio: Guideline Límite: Humans Idioma: En Revista: Cornea Año: 2018 Tipo del documento: Article País de afiliación: Marruecos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Fotoquimioterapia / Porfirinas / Fenómenos Biomecánicos / Fármacos Fotosensibilizantes / Córnea Tipo de estudio: Guideline Límite: Humans Idioma: En Revista: Cornea Año: 2018 Tipo del documento: Article País de afiliación: Marruecos